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Abstract

Transition metal oxide materials have attracted much attention for photoelectrochem-

ical water splitting, but problems remain, e.g. the sluggish transport of excess charge

carriers in these materials, which is not well understood. In this thesis I will show

how periodic, spin-constrained and gap-optimised hybrid density functional theory

can be used to uncover the nature and transport mechanisms of excess electrons and

electron holes in a widely used water splitting material, hematite (α−Fe2O3). I will

show that upon ionisation the electron hole relaxes from a delocalized band state

to a polaron localised on a single iron atom with localisation induced by tetragonal

distortion of the 6 surrounding iron-oxygen bonds. This distortion is responsible for

the sluggish hopping transport in bulk hematite, characterised by an activation energy

of 70 meV and a hole mobility of 0.031 cm2/Vs. By contrast, the excess electron

induces a smaller distortion of the iron-oxygen bonds resulting in delocalisation over

two neighbouring Fe units. I will show that 2-site delocalisation is advantageous

for charge transport due to the larger spatial displacements per transfer step. As

a result, the electron mobility is predicted to be a factor of 3 higher than the hole

mobility, 0.098 cm2/Vs, in qualitative agreement with experimental observations.

Extending this analysis to the hematite/liquid water interface, I will show that both

excess electrons and electron holes localise at the interface with qualitatively similar

structures to bulk hematite. However, the presence of the interface breaks the sym-

metry present in the bulk crystal and as a result the hole mobility is expected to be

greatly reduced. These calculations provide new fundamental insights essential for a

better understanding of rate-limiting transport processes governing photocatalytic

water splitting efficiency at the hematite/liquid water interface.





Impact Statement

With increasing environmental concerns, it is necessary to pursue more sustainable

and more efficient materials. Iron oxides and oxyhydroxides are highly abundant,

cheap and stable and have many properties such as visible spectrum band gaps

which make them ideal candidates in photoelectrochemical applications. Hematite

(α−Fe2O3) in particular has received much attention as a photoanode material for

water splitting, however problems remain including low mobility and short carrier

lifetimes due to electron-hole recombination. This thesis provides new fundamen-

tal insight into the nature and transport mechanisms of both excess electrons and

electron holes, essential for a better understanding of the rate-limiting transport

processes governing photocatalytic water splitting efficiency at the hematite/liquid

water interface.

This thesis demonstrates how periodic, spin-constrained and gap-optimised

hybrid density functional theory can be used to calculate all the electron transfer

parameters required to predict the charge mobility in bulk hematite. This method is

generally applicable to all semiconducting materials, and may be applied to other

oxides of technological interest for the study of intrinsic charge transfer processes

or for charge transfer between defects. Moreover, constrained density functional

theory is well suited for the study of interfacial charge transfer processes between

different semiconductors or between semiconductor electrodes and liquids. It could

thus become an essential tool for the emerging field of ab-initio electrochemistry.
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Chapter 1

Introduction

1.1 Charge transport in iron oxides
Understanding charge transport in transition metal oxides is essential to advancing

technical frontiers across diverse fields ranging from biogeochemistry, to renewable

energy materials and microelectronics. Hematite is a prominent example. It is

a naturally abundant n-type semiconductor [1] and plays a crucial role in redox

cycling [2, 3], bioremediation [4] and colloid chemistry [5]. Moreover, the mineral

oxide has a visible spectrum band gap and consequently has attracted much interest

as a photoanode material for water splitting [6–11].

In a water splitting reaction water is split into gaseous oxygen and hydrogen,

2H2O −−⇀↽−− O2 +2H2, (1.1)

where the generated hydrogen can be used as a clean energy resource with a high en-

ergy density [9]. Photocatalytic water splitting is particularly attractive as it involves

direct solar-to-chemical energy conversion, in contrast to the current commercial

methods for producing hydrogen which rely on steam reforming of methane [7].

In a photoelectrochemical (PEC) cell a photon is absorbed such that an electron is

excited into the conduction band, leaving a photo-generated hole in the valance band.

The carriers are then separated, and as in conventional water electrolysis oxidation

occurs at the anode,

2OH−+2h+ −−⇀↽−− H2O+
1
2

O2, (1.2)
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and reduction occurs at the cathode,

2H2O+2e− −−⇀↽−− H2 +2OH−. (1.3)

Generally, the anode is a semiconducting material and the cathode is a metal [6].

There are a number of important properties for a photoanode material including:

a visible spectrum band gap, stability in aqueous solution and a high conversion

efficiency of photogenerated charge carriers to water splitting products. The latter is

related to the charge mobility µ , as well as the lifetime of the photogenerated charges.

While hematite is highly abundant and naturally stable, it has low intrinsic mobility

and short carrier lifetimes. As such the goal of this thesis is to better understand the

nature of charge carriers in hematite, and to investigate the physical mechanisms that

lead to the sluggish transport of charge carriers.

At most practical temperatures charge transport in hematite occurs through

thermally-activated hopping of polarons, localised lattice distortions that lower the

energy of the excess electron or electron hole such that it becomes self-trapped [12].

As a result of the antiferromagnetic structure of hematite, shown in Figure 1.1,

electrical conductivity measurements show that conduction is around four orders

of magnitude greater in the parallel spin basal plane than in the perpendicular

direction [13, 14]. Despite the large number of studies that this material has inspired

over the past decades, it is noteworthy that the intrinsic electron and hole mobilities of

undoped hematite remain experimentally poorly constrained. Likely as a result of the

low intrinsic mobility, challenges in creating pure hematite samples and difficulties

in determining the intrinsic carrier concentration, to the best of my knowledge

there is no published experimental data for the mobility of undoped hematite. In

addition, polaron structures and associated reorganisation energies are not readily

experimentally accessible.

Some time ago, Rosso and co-workers [15–18] performed pioneering calcula-

tions on small hematite clusters using Hartree-Fock (HF), calculating an inner-sphere

reorganisation energy of 1.30 eV for excess electron transfer between two neigh-

bouring iron sites. An approximation of the polarisation of the full bulk crystal
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Figure 1.1: Structure of hematite. 2x2x1 supercell spin density with AFM spin orientation
indicated by arrows to the left of the figure.

in response to the presence of the electron polaron, referred to as the outer-sphere

reorganisation energy, was calculated as 0.17 eV. Their results are consistent with the

small electron polaron model, with the excess electron localising over a single iron

atom. More recent work by Rosso and co-workers continues to support the small

electron polaron [19, 20], and other groups have also utilised cluster models with

wavefunction methods with similar results [21].

As a result of the treatment of holes as minority charge carriers, in addition

to experimental challenges regarding the production of p-type hematite [22], the

electron hole polaron has received less attention than the electron polaron in hematite.

Early experimental work showed that the electron hole polaron has a higher activation

energy and reorganisation energy than that of the electron polaron, attributing this to

hole transport in narrow oxygen bands [23, 24]. However, more recent experimental

work on the hematite photoanode observed two different electron hole polaron types:

high energy O(2p) holes, and lower energy Fe(3d) holes [25]. Computational studies

are also frequently in disagreement, with HF cluster calculations by Rosso and co-

workers supporting the Fe(3d) hole [18], while electrostatically embedded HF cluster

model calculations from Liao et al. [22] supported the O(2p) hole. Lee et al. [26]

performed calculations utilising the Hubbard U correction, a common approach to

address the failings of semi-local density functional theory (DFT) functionals in

the treatment of strongly correlated Fe(3d) electrons [27], however were unable to



1.2. Structure of this thesis 27

identify any localised hole that was more stable than the delocalised one. Some

groups have attempted to compare the possible Fe(3d) or O(2p) holes, with Ansari et

al. [28] recently using post Hartree-Fock methods on cluster models to support the

O(2p) hole.

It is well known that polaron formation is very sensitive to the DFT functional

used, in particular the amount of exact Hartree-Fock Exchange (HFX). HF, used

in early calculations of hematite by Rosso and co-workers [15–18], is prone to

overbinding of excess charge [29] and may overstabilise small polarons. Moreover,

the cluster model that was often used has a number of shortcomings: artificial

hydrogen atoms necessary for bond termination, and a lack of consideration of the

strain imposed from the full bulk crystal. While some groups have performed bulk

DFT+U calculations, these do not produce a uniformly good description of the Fe(3d)

and O(2p) centres, band gap and spin population of hematite [30, 31].

With increasing efficiency of computer codes and platforms, it is now possible

to study polaron formation in oxide materials using hybrid functionals and large

supercells under periodic boundary conditions. In this way some of the complications

and uncertainties introduced by cluster models are removed. Vitally, in this work I

use hybrid functionals with the fraction of HFX adjusted empirically to reproduce

the experimental band gap. While this strategy is rather pragmatic, it is also one

of the most effective and accurate to date, allowing new insight into charge carrier

structure and dynamics.

1.2 Structure of this thesis

In Chapter 2 I present a brief overview of electron transfer theory, DFT and con-

strained DFT (CDFT). Computational details regarding the use of the CP2K software

package are also presented, including methods used to decrease the computational

cost of hybrid DFT calculations such as the auxiliary density matrix method.

While hematite has received the most attention due to its greatest electron

mobility [32], other iron oxides and oxyhydroxides may also have similar photoelec-

trochemical applications and an equal understanding of their polaron structures is



1.2. Structure of this thesis 28

desirable. As such, in Chapter 3 I will present calculations of both the electron and

electron hole polaron structures and associated reorganisation energies for a series of

iron oxides: hematite (α−Fe2O3), lepidocrocite (γ−FeOOH), goethite (α−FeOOH)

and white rust (Fe(OH)2). This series enables examination of a variety of structural

effects including hydration state, hydrogen bonding and the valence of bulk iron.

In Chapter 4 I will discuss in further detail the nature of charge carriers in

hematite, and calculate the electron transfer parameters and rates for both electron

and electron hole transfer in bulk hematite using CDFT. I will then compare my

calculated mobilities to literature calculated and experimental values.

In Chapter 5 I will provide motivation for Hirshfeld based CDFT, and present my

implementation of the necessary force terms in the popular DFT package CP2K. I will

benchmark my implementation against previous plane-wave CDFT calculations [33]

also performed using Hirshfeld partitioning, for both geometry optimisation and

molecular dynamics of: electron tunnelling between oxygen defects in MgO [34],

and electron self-exchange in aqueous Ru2+-Ru3+ [33]. I will also discuss the

general reliability of condensed phase CDFT calculations.

In Chapter 6 I will present calculations of the electron and hole polarons at

the hematite/liquid water interface, performed in collaboration with Dr. Philipp

Schienbein. I will compare the structure and dynamics of charge carriers between

bulk hematite and the hematite/liquid water interface, essential for a better under-

standing of rate-limiting transport processes governing photocatalytic water splitting

efficiency at the hematite/water interfaces.

Finally, in Chapter 7 I will conclude the findings of my PhD and provide an

outlook on future works.



Chapter 2

Theory

In Chapters 3-4 I will use DFT and CDFT to calculate the electron transfer parameters

necessary to calculate the mobility of electrons and electron holes in bulk hematite.

As such, in this Chapter I will present an overview of electron transfer theory in

Section 2.1, DFT in Section 2.2 and CDFT in Section 2.3. Particular emphasis

is placed on the justification for gap-optimised hybrid functionals, the choice of

functional throughout this thesis.

I will also briefly discuss some of the computational details regarding the use

of the CP2K software package in Section 2.4, including methods used to decrease

the significant computational cost of hybrid DFT calculations such as the auxiliary

density matrix method.
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Figure 2.1: Free energy curves for electron transfer between electron donor (D) and acceptor
(A). Reprint from Ref [37] with permission.

2.1 Electron transfer theory
For calculation of the required electron transfer (ET) parameters and mobility I

adopt the same ET theory as used in previous studies of hematite [18], and in

other CDFT calculations [34]. The semi-classical expression for the rate of ET

in a donor–acceptor complex derived from transition state theory in the harmonic

approximation and Landau–Zener theory has the form [35, 36]

k = κelνn exp
(
−∆A‡

kBT

)
, (2.1)

with the electronic transmission coefficient κel = 2PLZ/(1+PLZ) where PLZ =

1− exp(−2πγ) is the Landau–Zener transition probability with γ the adiabaticity

parameter defined as 2πγ = π3/2 〈|Hab|2
〉

TS /hνn
√

λkBT .
〈
|Hab|2

〉
TS is the squared

electronic coupling averaged over the transition state (TS) configurations, νn is the

effective nuclear frequency along the reaction coordinate, ∆A‡ is the activation free

energy, λ is the reorganisation free energy, kB the Boltzmann constant and T the

temperature [37]. For an effective nuclear frequency I use the same value as Rosso

and co-workers [18], the energy of the highest infra-red active longitudinal optical

mode phonon 1.85× 1013 s−1. I note this is very close to the experimental Fe-O

stretch vibration 1.72×1013 s−1 [38].
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The general expression for the activation free energy ∆A‡ valid in the non-

adiabatic, adiabatic and intermediate regimes is [39]

∆A‡ = A0(∆E = 0)−A0(∆E = ∆E0) (2.2)

= ∆A‡
na −∆

‡, (2.3)

where A0 is the free energy curve for the adiabatic electronic ground state for electron

transfer taking the vertical energy gap, ∆E, as reaction coordinate,

∆E(RN) = Eb(RN)−Ea(RN), (2.4)

Ea and Eb are the electronic energies for initial and final diabatic states a and b, RN

the nuclear configuration, ∆E = ∆E0 the position of the minimum of state a and ∆E

= 0 the position of the TS. Refer to Figure 2.1.

∆A‡
na is the activation free energy on the diabatic electronic states,

∆A‡
na =

(λ +∆A)2

4λ
, (2.5)

and ∆‡ is a correction that becomes important when the electronic coupling Hab is

large (|Hab| > ∼ 0.01-0.1 λ )

∆
‡ =

〈
|Hab|2

〉1/2
TS − 1

λ

〈
|Hab|2

〉
∆E0,

(2.6)

with the assumption that the free energy difference, ∆A, between the initial and final

state is zero, which is the case in hematite due to symmetry. Ignoring thermal effects

of phonons on electronic coupling and reorganisation free energy, the activation free

energy is approximated by the activation energy, ∆E‡,

∆A‡ ≈ ∆E‡ =
λ

4
− (Hab −

H2
ab

λ
), (2.7)

where Hab is taken at the TS and the reorganisation energy λ is calculated as

λ = 4(Ea(TS)−Ea(∆E0)), (2.8)
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where Ea(TS) and Ea(∆E0) are the electronic energies of the initial diabatic state

at the transition state and minimum energy nuclear configurations, respectively,

calculated using CDFT. Note that for the current system, Ea(∆E0) is virtually iden-

tical with the DFT (adiabatic) ground state energy at the minimum energy nuclear

configuration.

Charge transport in hematite can be modelled as a succession of hopping

between sites, with associated rate constants calculated from Eq. 2.1. As electrical

conductivity measurements show that conduction is four orders of magnitude greater

in the basal plane than in the perpendicular direction [13, 14], in this thesis I only

consider the basal plane mobility. The charge mobility is obtained from the Einstein

relation

µ =
eD

kBT
. (2.9)

Calculation of the diffusion coefficient D can be performed through methods

such as kinetic Monte Carlo [40], or by solving a chemical master equation to

obtain the time-dependent charge population of each site as by Giannini et al. [41].

The mean squared displacement (MSD) is calculated from the time evolution of

the charge population, and following an initial non-linear equilibration period the

diffusion coefficient is given by gradient of the MSD [42]

D =
1
2

lim
t→∞

dMSD(t)
dt

. (2.10)

As a result of the lattice symmetry, diffusion is isotropic within the basal plane

and therefore the calculated mobility tensor becomes a single value.

Alternatively, the diffusion coefficient can be calculated analytically for a 1D

chain model as

D =
R2ik

2
, (2.11)

for the transfer distance R, site multiplicity i and rate constant k. Rosso and co-

workers [15, 18] directly used Equation 2.11 for a 1D model of the 2D basal plane
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of hematite, with the site multiplicity i=3 to approximately account for the 3 first

nearest neighbours of an iron atom in the 2D plane. Adelstein et al. [43] also used

Equation 2.11 for an approximation of the 2D plane, but with i=0.5. My approach

moves beyond these approximations, calculating the full mobility tensor in the basal

plane.

2.2 Density functional theory

While in principle the Schrödinger equation can be solved to provide the solutions

for any quantum mechanical problem, for a system with N nuclei and n electrons the

solutions depend on 3(n+N) interacting degrees of freedom. Even with the ability to

separate the electronic and nuclear degrees of freedom via the Born-Oppenheimer

approximation, this is a 3n many-body problem that can only be solved for the

simplest of systems. As such, further approximations must be made.

In 1964 Hohenberg and Kohn showed that the energy of the ground elec-

tronic state is a unique functional of the electron density, laying the foundations for

DFT [44]. Further refinement by Kohn and Sham in 1965 [45] provided a general

methodology, based on a fictitious system of non-interacting electrons where the

ground state density is the same as the real system where the electrons interact. The

total energy for this system can be written as

E[ρ] = T [ρ]+
∫

drVext(r)ρ(r)+EH [ρ]+EXC[ρ], (2.12)

where T [ρ] is the kinetic energy, Vext is the external potential, EH [ρ] is the Hartree

energy and EXC[ρ] is the exchange correlation energy.

While Equation 2.12 is exact in principle, as a result of the many-body con-

tributions incorporated into the exchange-correlation functional the exact form is

unknown. The majority of exchange-correlation functionals are derived starting

from the homogeneous electron gas model, where the exchange energy is known

analytically and the correlation energy can be fit from higher level theories such as

quantum Monte Carlo. The simplest form of the exchange correlation functional is
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known as the local density approximation (LDA)

ELDA
XC [ρ(r)] =

∫
ρ(r)εxc[ρ(r)]dr, (2.13)

where the exchange-correlation functional depends only on the local value of the

density. The most common improvement is known as the generalised gradient

approximation (GGA)

EGGA
XC [ρ(r)] =

∫
f (ρ(r),∇ρ(r))dr, (2.14)

which includes the first derivative of the electron density, and forms the basis for

many functionals including PBE [46]. Generally, GGA functionals vastly outperform

LDA functionals in the calculation of total energies and have therefore become the

standard choice in most calculations [47].

2.2.1 Optimised hybrid functionals

The electron self interaction error (SIE) is one of the major shortcomings of standard

density functionals [48–50], and in the context of this work is particularly problem-

atic due to the spurious delocalisation of localised charges [47, 51]. For example

at electron transfer (ET) transition states, where the exact adiabatic ground state is

delocalized over the donor and acceptor, the energy is strongly underestimated by

standard density functionals due to the wrong scaling of these functionals with frac-

tional electron number, resulting in too low ET barriers and strongly overestimated

ET rates [52, 53].

The incorrect scaling of standard density functionals is demonstrated in Figure

2.2. Exact DFT should give a total energy that is piecewise linear with respect to

the fractional number of electrons in a system [55], while standard functionals such

as those based on the generalised gradient approximation (GGA) display convex

behaviour. As mentioned previously HF tends to overlocalise excess charges, due

to a concave behaviour [47]. The delocalisation error can therefore be related to

the negative deviation of the E(N) curve from the exact linearity condition, while

the localisation error is related to positive deviation. The justification for hybrid
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Figure 2.2: Deviation of total energy with number of electrons. Reprint from Ref [54] with
CC-BY licence.

functionals is also clear, that by mixing both of these opposing errors a new piecewise

linear functional can be obtained.

In this thesis I study a number of different materials, primarily iron oxides and

oxyhydroxides, using gap-optimised hybrid functionals. This method of adjusting

the fraction of exact exchange to reproduce the experimental band gap is a popular

approach for transition metal oxides [31, 56]. The function I use is HSE06 [57],

EHSE
XC = aEHF, SR

X (ω)+(1−a)EPBE, SR
X (ω)+EPBE, LR

X (ω)+EPBE
C , (2.15)

where EHF, SR
X (ω) is the short-range (SR) HF exchange while EPBE, SR

X and EPBE, LR
X

are the short and long range components of the PBE exchange functional. The

main contribution of this functional is the introduction of the screening parameter

ω , which defines the separation range. For ω=0 HSE reduces to the global hybrid

functional PBE0 [58], and for ω=∞ the functional becomes identical to PBE. As

such, a finite value of ω is equivalent to extrapolation between these two limits. The

original form of HSE used ω=0.15 au = 0.3 Å−1 [59–61], later revised to ω=0.11 au

= 0.207 Å−1 in HSE06 [57].

The piecewise linearity of the total energy can be quantified through the gener-
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alised Koopmans condition, with nonlinearity

ξ =

E(N +1)−E(N)− ε(N +1) for electrons

E(N)−E(N −1)− ε(N) for holes
(2.16)

where E(N) and ε(N) are the total energy and HOMO energy of a system with N

electrons [54, 62]. The values obtained for ξ are summarised in Table 2.1. All func-

tionals with the fraction of exact exchange adjusted to reproduce the experimental

band gap have a nonlinearity of no more than 0.04 eV (except for the lepidocrocite

electron) while forming localised polarons (except for the goethite electron hole). I

note that in addition to tuning the fraction of HFX, there are other methods which

aim to restore the linearity of the total energy which are used in Koopmans compliant

functionals [63].

2.2.2 Other functionals

Optimised hybrid functionals belong to the 4th rung of Jacobs ladder, a popular clas-

sification scheme of DFT functionals proposed by Perdew [65]. Methods belonging

to lower rungs are less expensive, and include alternatives to HSE06 such as PBE+U

and SCAN [66].

Rather than introducing a certain fraction of exact exchange, in GGA+U an

onsite Coulomb interaction is introduced that acts upon a particular orbital [27,67,68].

Similar to the fraction of exact exchange, this introduces a tunable parameter known

as the Hubbard U which can be optimised to reproduce the experimental band gap.

Previous studies for hematite have shown a surprising variation in the choice of

the Hubbard U parameter from 4 V - 6 V [31, 43, 69–72], and that it is difficult to

simultaneously reproduce important structural and electronic properties with the

same parameter [31]. In addition, it has been shown that certain experimentally

known surface terminations of hematite can be reproduced by HSE(12%) but not by

PBE+U [30].

A further alternative to either hybrid functionals or GGA+U are the class

of meta-GGA functionals, which incorporate a dependency on either the second
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derivative of the electron density or more commonly the kinetic energy density

[73]. In particular, the recently developed Strongly Constrained and Appropriately

Normed (SCAN) meta-GGA functional [66] has received much interest due to its

computational cost comparable to standard GGA functionals, while more accurately

predicting important structural and electronic properties [74]. However, it has been

demonstrated that SCAN only slightly improves on PBE in regards to the band

gap for most materials [75–77] including hematite [78, 79]. In my calculations, I

found that SCAN is unable to provide a good description of the charged hematite

potential energy surface where it predicts a localised hole and electron polaron

energy degenerate with the delocalised charges.

As such, no calculations with either PBE+U or SCAN are presented in this

thesis.

2.3 Constrained DFT

Constrained DFT (CDFT) is an established method for generating diabatic electronic

states and calculating ET parameters in molecular systems [34, 52, 80–83], although

applications to condensed phase/periodic systems remain rare to date. An external

potential is added to the Kohn-Sham (KS) Hamiltonian to enforce localisation of

the excess electron on the electron donor or acceptor, thereby creating a set of

charge localised diabatic states that can be used to obtain the basic quantities of ET

theories (reorganisation energy, driving force and electronic coupling). The rationale

behind CDFT is that the charge localised diabatic states suffer less from the electron

delocalisation error than the adiabatic electronic states in DFT calculations [52].

In Chapter 4 I will take advantage of a recent and very efficient periodic atomic-

orbital implementation of CDFT [84] to calculate at hybrid DFT level all the ET

parameters required to predict the charge mobility of electrons and holes in bulk

hematite. As CDFT is a well established method, with many recent implementations

in popular DFT packages [84–88], I choose to only briefly summarise the theory

relevant to this thesis.

Charge localised states are constructed by minimising the energy functional
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E[ρ] under the condition that the constraint

Nc =
∫

w(r)ρ(r)dr, (2.17)

is satisfied. w(r) is a weight function that defines how electron density is assigned

to atoms or molecules in the constraint region, e.g., electron donor and electron

acceptor, and Nc is the constraint value, e.g., the charge of the atoms or molecules or

their charge difference. Both remain fixed during CDFT minimisation.

The constrained minimisation is performed by introducing a Lagrangian multi-

plier V and a new energy functional

W [ρ,V ] = E[ρ]+V
(∫

w(r)ρ(r)dr−Nc

)
. (2.18)

W [ρ,V ] is minimised with respect to ρ for a given V , and V is iteratively

adjusted so that the minimised electron density obeys the constraint Eq. 2.17.

There are many different partitioning schemes which can be used to construct

the weight function, however in this thesis I use Hirshfeld partitioning of the electron

density as this is shown to be a good descriptor for polaron formation in Chapter

3. The Hirshfeld weight function w(r) is constructed from the promolecular atomic

densities ρi(r - Ri) = ρi(r) where r = |r - Ri|. For a system with N total atoms and a

charge difference constraint defined between donor atoms D and acceptor atoms A

the weight function has the form

w(r) = ∑i∈D ρi(r - Ri)−∑i∈A ρi(r - Ri)

∑
N
j ρ j(r - R j)

. (2.19)

In Chapter 5 I will discuss the implementation of the necessary force terms for

CDFT geometry optimisation and CDFT-MD based on Hirshfeld partitioning of the

electron density. However, for calculation of the charge mobility in Chapter 4 the

CDFT forces were not needed, as only single point calculations were performed to

obtain the energy of the diabatic states and the electronic couplings. The electronic

couplings are calculated with the method of Wu and Van Voorhis [52], where the

electronic couplings are simply the off diagonal elements of the orthogonal diabatic



2.4. Computational details 40

Hamiltonian.

2.4 Computational details
Essential for the use of hybrid functionals such as HSE06 for electron rich transition

metal oxides in combination with large supercells is the highly efficient implementa-

tion in the CP2K code [89, 90]. In particular, the use of integral screening (Section

2.4.1) and the auxiliary density matrix method (ADMM) (Section 2.4.2) significantly

improve the speed of HFX calculations [91, 92].

A noteworthy limitation is that at the time of writing, hybrid DFT calculations

with k-point sampling is not supported in CP2K. As such, all calculations performed

in this thesis are for the Γ-point of the Brillouin zone.

2.4.1 Integral screening

Hartree-Fock is typically quoted as scaling with N4, where N is the number of basis

functions, based on the the calculation of four-center two-electron integrals [93].

In practice, many of these integrals are negligible and through use of the Schwarz

inequality an upper bound can be determined allowing for screening and a subsequent

decrease in scaling from N4 to N2 [94]. A similar procedure can be applied to the

density matrix, further decreasing the computational cost to linear scaling [95].

2.4.2 ADMM

While integral screening allows for linear scaling HFX calculations [95], the compu-

tational cost can still be significant. The use of a smaller or sparser auxiliary density

matrix for the HFX calculation allows for a decrease in computational cost of over

an order of magnitude, with negligible decrease in accuracy [92].

The primary basis set used for all calculations in this work is DZVP-MOLOPT-

SR-GTH [96], a short range variant of the popular double-ζ basis set optimised for

condensed phase calculations. The auxiliary basis set used for ADMM was cpFIT3

for O and H, corresponding to three Gaussian exponents for each valence orbital in

addition to polarisation functions from the standard 6-31G** basis sets [92]. For Fe

the cFIT11 basis set was used which includes 4s, 3p, 3d and 1f orbitals. I note that
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both the primary and auxiliary basis sets were chosen to be consistent with previous

work performed on hematite in the Blumberger group [30, 97–100].

2.4.3 Periodic boundary conditions

In periodic boundary conditions the use of global hybrid functionals is problematic

due to the integratable singularity [59]. As such, the global hybrid functional PBE0

is typically used with a truncated Coulomb (TC) potential introducing a cutoff radius

Rc similar to the range separation parameter ω of HSE06. More commonly, the

variant formally known as PBE0-TC-LRC is used where a long-range correction

(LRC) based on the PBE exchange hole is added which slightly improves accuracy

for short-range cutoffs [91]. I note that a clear benefit of the HSE06 functional

is defined range separation parameter ω [57], while there is no defined value of

the cutoff radius Rc for PBE0-TC-LRC and as such comparisons between different

calculations with this functional must be performed carefully. While I use HSE06 for

all iron oxides and oxyhydroxides in thesis, in Chapter 5.2.1.2 I use PBE0-TC-LRC

for calculations of oxygen defects in MgO to enable a direct comparison to previous

calculations [34, 82].

2.4.4 Dispersion correction

For consistency, in all calculations performed in this thesis I use the Grimme DFT-

D3 dispersion correction [101]. This is a post-hoc addition to the DFT calculation

at negligible computational cost, which aims to provide a better description of

dispersion interactions important in weakly bonded systems. I note however that my

calculations for bulk hematite (Chapters 3 and 4) are not dependent on the inclusion

of this dispersion correction.



Chapter 3

Polaron structure for a series of iron

oxides

While hematite has received the most attention due to its greatest electron mobil-

ity [32], other iron oxides and oxyhydroxides may also have similar photoelectro-

chemical applications and a similar understanding of their polaron structures is

desirable. As polaron structures are not readily experimentally accessible [102], the

calculations in this Chapter provide valuable insights into the structure of charge

carriers important for photocatalytic water splitting. This work has been published

in [103].

In this Chapter I present calculations of the both the electron and electron hole

polaron structures and associated reorganisation energies for a series of iron oxides:

hematite (α−Fe2O3) in Section 3.2.1, lepidocrocite (γ−FeOOH) in Section 3.2.2,

goethite (α−FeOOH) in Section 3.2.3 and white rust (Fe(OH)2) in Section 3.2.4.

This series enables a discussion of a variety of structural effects including hydration

state, hydrogen bonding and the valence of bulk iron in Section 3.3. In particular,

the 2-site delocalisation of the electron polaron is discussed in Section 3.3.1 and the

lack of any localised hole polaron in goethite is discussed in Section 3.3.2.
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Crystal a / Å b / Å c / Å α β γ

Hematite [105] 5.036 5.036 13.747 90 90 120
Lepidocrocite [106] 3.072 12.516 3.873 90 90 90
Goethite [107] 4.598 9.951 3.018 90 90 90
White rust [108] 3.259 3.259 4.577 90 90 120

Table 3.1: Crystal structure used for all iron oxides and oxyhydroxides studied in this thesis,
with reference to experimental sources. I note that to decrease computational
cost, no unit cell optimisations were performed.

3.1 Computational setup

As discussed in Chapter 2.2.1, all calculations were performed applying unrestricted

DFT with a modified form of the range-separated hybrid functional HSE06 [57],

where the percentage of HFX is optimised to reproduce the experimental band gap

for each iron oxide [31]. Refer to Table 2.1 for the values used for each iron oxide

with reference to the unmodified form of HSE06.

I note that the original publication of this work [103] used a slightly undercon-

verged cutoff of 400 Ry for the real-space integration grid used for representing

the electron density, consistent with previous calculations of hematite in the Blum-

berger group [30, 97–100], which was later increased to 600 Ry in my calculations

of charge mobility for bulk hematite [104]. While there is no qualitative change

in the results, the more strongly converged cutoff in combination with a more ex-

haustive examination of polaron structures has resulted in a slight refinement of the

original reorganisation energies. I stress however that there is negligible change

in bond lengths and spin moment, and that the change in reorganisation energy is

within chemical accuracy (<1 kcal/mol). This applies only to calculations for bulk

hematite and as such the lepidocrocite, goethite and white rust calculations remain

as originally published [103].

Initial coordinates and cell sizes were taken from the experimental crystal

structures for hematite [105], lepidocrocite [106], goethite [107] and white rust [108]

as shown in Table 3.1. The wavefunction was optimised for the experimental spin

ground state [108–111], which are antiferromagnetic.

During the geometry optimisations structures were converged until the residual
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forces were smaller than 0.02 eV/Å. Unit cell parameters were fixed, and no symme-

try restrictions were applied. For an examination of finite size effects calculations

for each iron oxide were performed on at least two different supercell sizes, and to

prevent bias of the system no atom was specified as the initial guess for the removal

or addition of an electron.

The reorganisation energy λ associated with polaron formation is calculated

from Nelsen’s four-point method [17, 112]:

λ =
λR +λO

2
, (3.1)

where λO = EO(RR)−EO(RO) is the difference in energies between the oxidised

states in their reduced (EO(RR)) and oxidised geometries (EO(RO)), and λR =

ER(RO)−ER(RR) is the difference in energies between the reduced states in their

oxidised (ER(RO)) and reduced geometries (ER(RR)).

For comparison of the extent of localisation for the different iron oxides, the

change in spin moment was calculated from Hirshfeld analysis [113] for the atoms

over which the polaron localises. Another metric that is commonly used to identify

polaron formation is the inverse participation ratio (IPR) [114,115], which quantifies

the degree of localisation,

IPR(ψn) =
∑

N
i=1 a4

ni

(∑N
i=1 a2

ni)
2
, (3.2)

where

ψn =
N

∑
i=1

aniφi, (3.3)

is the nth Kohn–Sham eigenvector, N is the number of atomic orbitals and φi is the

ith atomic orbital. The IPR is 1/N for completely delocalised states and 1 for fully

localised states.
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3.2 Results

3.2.1 Hematite α−Fe2O3

Hematite is a corundum type iron oxide, with a hexagonal structure where each

iron(III) atom is bonded to six oxygen atoms. Calculations performed by Pozun

et al [31] established that 12% HFX is able to recover the correct band gap and

geometry for hematite, and has been used extensively for both bulk hematite as well

as the hematite/liquid water interface by the Blumberger group [30, 97–100].

Calculations were performed on three different supercells: a 2x2x1 supercell

composed of 120 atoms, a 3x3x1 supercell composed of 270 atoms and the largest

4x4x1 supercell composed of 480 atoms. Neutral geometry optimisation results in a

structure in good agreement with experiment [105], where the the two distinct planes

of iron atoms that comprise an iron bilayer form average Fe-O bond lengths of 1.94

and 2.12 Å.

3.2.1.1 Hole polaron

Figure 3.1 shows the localisation of an electron hole in the 2x2x1 supercell. When

an electron is removed with electronic but no nuclear relaxation (referred to as the

vertical state) the hole delocalises over the Highest Occupied Molecular Orbital

(HOMO), composed of both O(2p) and Fe(3d) orbitals. The electron hole relaxes

from a delocalized band state to a polaron localised on a single iron atom with

localisation induced by tetragonal distortion of the 6 surrounding Fe-O bonds. There

is a contraction of four equatorial Fe-O bonds, and and a very slight expansion of

two axial Fe-O bonds. These changes in bond lengths are in response to the removal

of electron density in the equatorial plane, more specifically in response to removal

of an electron from a dx2−y2 orbital. Similar tetragonal elongation is observed in

the Jahn-Teller effect of high spin d4 complexes [116], however this is not strictly

Jahn-Teller distortion as there are there are two distinct groups of Fe-O bond lengths

of 1.94 and 2.12 Å in the neutral geometry due to the iron bilayer [105]. A schematic

energy level diagram is shown in Figure 3.2.

As a result of the two distinct groups of Fe-O bonds, the contraction is asymmet-
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Figure 3.1: Electron hole in hematite: (A) Sum of 5-fold degenerate HOMO (isosurface
0.02 e/Bohr3). (B) Excess spin density for the vertical state (isosurface 0.002
e/Bohr3) and (C) the relaxed state (isosurface 0.005 e/Bohr3). (D-E) Excess
electron density for the relaxed state (isosurface 0.005 e/Bohr3). The electron
hole relaxes onto a single iron site, with positive increase in density indicated
by yellow isosurfaces and negative by blue isosurfaces. Bond lengths between
the iron site and bonded oxygen atoms are shown in Angstrom. Calculations
are for the bulk hematite 2x2x1 supercell (A-D) and for the 4x4x1 supercell (E),
viewed perpendicular to the AFM layers. AFM spin orientation is indicated by
arrows to the left of the figure. The standard ‘ball-and-stick model’ is shown
for images A-C, while the ‘wireframe’ model is used to highlight the polaron
structure in images D-E.
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Figure 3.2: Schematic energy level diagram for the hole polaron in hematite. Ignoring
the asymmetry of the Fe-bilayer, the structure of the hole polaron in hematite
can be understood from the Jahn-Teller effect of high spin d4 octahedral metal
complexes. The DFT LUMO and HOMO on the ground state hole polaron
geometry are shown for comparison.

Figure 3.3: Electron hole in hematite: (A) projected density of states for the hole ground
state and (B) IPR demonstrating the localisation of the electron hole polaron
onto a single iron atom.

ric. For example in the 2x2x1 supercell the longer Fe-O bonds (2.12 Å) experience a

slightly stronger contraction, -0.080 Å in comparison to -0.050 for the shorter Fe-O

bonds (1.94 Å). Figure 3.1 also compares the polaron structure for the 2x2x1 and

4x4x1 supercells, with only a slight decrease in bond lengths from -0.065 Å to -0.070

Å.

The reorganisation energy calculated from Equation 3.1 for the 2x2x1 supercell

is 0.33 eV, increasing to 0.34 eV for the 3x3x1 and 4x4x1 supercells. The formation

of polaronic states within the band gap has been verified from the density of states

and the IPR (Figure 3.3).

Table 3.2 shows the spin moment and charge over the iron atom that the polaron

localises for the 2x2x1 supercell. It can be seen that the change in spin moment

(+0.66 from neutral to hole ground state) is a good indicator of polaron formation
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Neutral GS Charged Charged GS Neutral
Excess electron

Charge 0.44 0.41 0.36 0.45
Spin -3.95 -3.90 -3.72 -3.96

Electron hole
Charge 0.44 0.44 0.42 0.40

Spin -3.95 -3.93 -3.29 -3.86

Table 3.2: Charge and spin localisation in bulk hematite. Average charge and spin of the iron
atom that polaron localises on from Hirshfeld analysis. ‘Neutral GS’ refers to
neutral ground state, ‘Charged’ to neutral ground state geometry with the excess
charge added, ‘Charged GS’ to charged ground state and ‘Neutral’ to neutral
state on the charged ground state geometry. Calculations are shown for the 2x2x1
supercell with either an excess electron or an electron hole.

while the change in charge (-0.02) is not. The change in electron density in Figure

3.1 shows a clear decrease in electron density at the dx2−y2 orbital, and therefore the

change in spin moment without a change in charge is a result of (paired) electron

rearrangement. While it is surprising that both the electron and hole polaron localise

with no change in charge, I note that Adelstein et al. [43] and Ansari et al. [28] have

also observed this effect. Notably, Ansari et al. [28] found that even for MP2 and

CCSD calculations on small hematite clusters only the change in spin moment is a

useful indicator of polaron formation.

The reorganisation energy calculated from Equation 3.1 for the 2x2x1 supercell

is 0.33 eV, increasing to 0.34 eV for the 3x3x1 and 4x4x1 supercells. The formation

of polaronic states within the band gap has been verified from the density of states

and the IPR (Figure 3.3).

3.2.1.2 Electron polaron

The vertical state for an excess electron is shown in Figure 3.4 and is consistent

with the Lowest Unoccupied Molecular Orbital (LUMO), composed of Fe(3d) t2g

character. Upon nuclear relaxation the excess electron delocalises over two iron

atoms, with equal changes in spin moment of +0.23 (see Table 3.2). Due to the

delocalisation over two iron sites and the subsequent smaller change in bond lengths,

the reorganisation energy is reduced from 0.34 eV for the hole polaron to 0.23 eV

for the electron polaron. There is no qualitative change in polaron structure as the
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Figure 3.4: Excess electron in hematite: (A) LUMO (isosurface 0.02 e/Bohr3), (B) excess
spin density for the vertical state (isosurface 0.002 e/Bohr3) and (C) the relaxed
state (isosurface 0.005 e/Bohr3). (D-E) excess electron density for the relaxed
state (isosurface 0.005 e/Bohr3). The excess electron delocalises over two iron
sites, with a positive increase in density indicated by yellow isosurfaces and
negative by blue isosurfaces. Bond lengths between the iron site and bonded
oxygen atoms are shown in Angstrom. Calculations are for the bulk hematite
2x2x1 supercell (A-D) and for the 4x4x1 supercell (E), viewed perpendicular to
the AFM layers. AFM spin orientation is indicated by arrows to the left of the
figure. The standard ‘ball-and-stick model’ is shown for images A-C, while the
‘wireframe’ model is used to highlight the polaron structure in images D-E.
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Figure 3.5: Excess electron in hematite: (A) Density of states and (B) IPR demonstrating
the delocalisation of the electron polaron across two iron atom.

Figure 3.6: Excess electron in hematite. (A) LUMO (isosurface 0.02 e/Bohr3), (B) excess
spin density (isosurface 0.005 e/Bohr3) for the relaxed state in a 2x2x1 supercell
and (C) a 4x4x1 supercell. Increasing the percentage of HFX from 12% to 50%
causes localisation of the electron polaron on a single iron atom. Bond lengths
between the iron site and bonded oxygen atoms are shown in Angstrom, and
the density plots are shown in the ’wireframe’ model to highlight the polaron
structure.

supercell size is increased from 2x2x1 to 4x4x1, indicating that this is not an artefact

of finite size effects.

An important consideration is that the percentage of HFX has been optimised

to reproduce the experimental band gap, and that this may alter the (de)localisation

behaviour. Therefore for completeness, the localisation patterns at 25% and 50%

HFX have also been investigated for the excess electron. The value of 25% HFX is

notable as this is the value used in unmodified HSE06. At this value the change in

spin density reduces significantly over one of the iron sites, resulting in a change
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in spin moment of 0.50 and 0.09 over the two iron sites. At 50% HFX, shown in

Figure 3.6, the electron is fully localised with a change in spin moment of 0.68 and

0.02. Interestingly, even for the fully localised electron polaron there is still some

interaction between the iron atom and the nearest neighbour as indicated by the

asymmetry of the increase in Fe-O bond lengths in Figure 3.6 and the alignment of

the spin density such that it maximises overlap with a nearest neighbour. This is

very similar to calculations performed by Adelstein et al. [43] with DFT+U, where

they observed even for an electron polaron that appeared fully localised from spin

moment analysis (0.51, 0.01) there was still some degree of delocalisation of the

electron polaron over two iron atoms as identified from shorter Fe-Fe bond lengths.

At 25% and 50% HFX the band gap rises to 3.6 eV and 6.4 eV respectively, and

therefore it can be understood that only at unphysically high values of HFX does the

electron localise over a single iron site as previously understood in the literature. It

has been confirmed that in restarting the HSE06(50%) structure with 12% HFX there

is immediate electronic relaxation to the 2-site delocalised structure, even without

geometry re-optimisation.
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Figure 3.7: Excess spin density for an excess electron in (A) a hematite dimer cluster and (B)
a 1D hematite chain. Calculations for the hematite dimer cluster are performed
with HSE06(12%), where the excess electron is delocalised over both iron atoms.
In the 1D hematite chain the excess electron is delocalised across the whole
chain with HSE06(12%), and therefore the excess spin density is shown for
pure HF where there is localisation on a single iron atom. The same isosurface
colouring scheme is used as for bulk hematite (Figures 3.1 and 3.4), however
due to the localisation across the opposite spin channel the colours are inverted.

3.2.1.3 Hematite cluster and 1D chain

Much of the current understanding of small polaron formation in hematite originates

from pioneering cluster and 1D chain model calculations [15–18]. As such, for

completeness I briefly discuss calculations performed for these systems.

Figure 3.7 shows the excess spin density for an excess electron in a hematite

dimer cluster calculated with HSE06(12%) and for a 1D hematite chain calculated

with pure HF. I calculated the reorganisation energy for the same hematite dimer

cluster as used by Rosso and co-workers [18], finding a reorganisation energy of

0.48 eV which is more than twice that found in my calculations for bulk hematite of

0.23 eV. As such, the larger reorganisation energy found in earlier calculations of

hematite can be attributed to the presence of artificial hydrogen atoms necessary for

termination of the dimer cluster, and the neglect of strain effects present in the bulk

crystal.

For the 1D hematite chain I found that with HSE06(12%) there is no localised

electron or hole polaron. With pure HF, shown in Figure 3.7, the band gap is severely

overestimated as 16 eV compared to the experimental band gap of 2.2 eV. As such, I

do not provide any further results for either the 1D hematite chain or the hematite

dimer cluster.

3.2.2 Lepidocrocite γ−FeOOH

Lepidocrocite is a naturally occurring metastable iron oxyhydroxide, of interest

for charge transport processes in addition to proton transfer as a consequence of
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Figure 3.8: Excess hole in lepidocrocite: (A) HOMO with asymmetry caused by degeneracy
(<0.06 meV) between the top four levels, (B) difference in spin density for
vertical state, and (C) the relaxed state. The excess hole relaxes onto a single
iron site, where the positive increase in spin density is indicated by yellow
isosurfaces and negative by blue isosurfaces. Bond lengths between the iron site
and coordinated oxygen atoms are shown in Angstrom. Data for a 313 supercell
of bulk lepidocrocite calculated with HSE06(18%), viewed perpendicular to the
AFM layers along the (100) plane. AFM spin orientation is indicated by arrows
to the left of the figure.

its layered graphite-like structure [117]. The band gap of lepidocrocite calculated

using HSE06(12%) is 1.4 eV, outside of the experimental range 2.1-2.4 eV [64, 118].

The band gap for goethite is similarly underestimated, and as lepidocrocite and

goethite are polymorphs it would be desirable to use the same value of HFX for both

systems. Therefore the percentage of HFX is increased to 18%, in order to reproduce

the experimental band gaps for both lepidocrocite and goethite. The two supercell

sizes used are 313 (144 atoms) and 613 (288 atoms), increased in the direction of

localisation only in order to examine finite size effects.

There are a few notable differences between the experimental and neutral

optimised geometries, a result of the experimental uncertainty regarding the hydrogen

atom positions. Two space groups have been proposed for lepidocrocite: the centro-

symmetric group Cmcm where the hydrogen atoms occupy two positions either

side of the Fe-O bond, and the Cmc2 group where the hydrogen atoms occupy only

one of these positions (Figure 3.8). A number of experimental papers quote either

space group [106, 110, 119], however it is clear that only the Cmc2 space group used

in this work results in a physically meaningful structure. The Pmc2 space group

structure containing alternating hydrogen bonds in adjacent layers is found to be
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Figure 3.9: Excess electron in lepidocrocite: (A) LUMO with asymmetry caused by degen-
eracy (<5 meV) between the top four levels. (B) Difference in spin density for
vertical state, and (C) the relaxed state. The excess electron relaxes onto two
parallel spin iron sites, with a positive increase in spin density caused by the
addition of an anti-symmetric spin. An alternative view of the lepidocrocite
electron polaron structure can be found in Figure 3.10, highlighting the 2-site
delocalisation. Data for a 613 supercell of bulk lepidocrocite calculated with
HSE06(18%).

Figure 3.10: Excess electron 2-site delocalised structure: difference in spin density for (A)
lepidocrocite and (B) goethite. The ‘wireframe’ model is used to highlight the
polaron structure.

energy-degenerate with Cmc2, as different layers will be weakly correlated. This

may be a cause for the experimental identification of the space group as Cmcm, as

the hydrogen atoms may occupy either space group with no energy penalty. These

results are in good agreement with other computational studies [117].

3.2.2.1 Hole polaron

Similar to hematite, the HOMO of lepidocrocite (Figure 3.8) is composed of a

mixture of O(2p) and Fe(3d) orbitals. Following nuclear relaxation a single iron
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Figure 3.11: Excess electron and electron hole in lepidocrocite: (A-B) density of states and
(C-D) IPR demonstrating the 1-site localised hole polaron (A, C) and the 2-site
delocalised electron polaron.

site emerges with a change in spin moment of 0.64, very similar to that found for

the hematite 2x2x1 supercell of 0.66. With the larger 613 supercell the change in

spin moment increases slightly to 0.65, and the average change in bond lengths

increases from -0.073 Å to -0.080 Å. The largest change in bond lengths of -0.14 Å

is experienced by the two non-hydrogen bonded oxygen atoms of the same spin layer

(± c direction), and the smallest of +0.02 Å is over the hydrogen bonded oxygen

atoms (-b direction). This increase in bond lengths is a consequence of the iron

atom moving in the opposite direction to maximise orbital overlap with the in-plane

oxygen atoms, as well as the inflexible hydrogen bonding network which leads to

a low change in spin moment and bond lengths over the hydrogen bonded oxygen

atoms. As such while the average change in bond lengths and spin moment over the

iron atom is similar to the hematite 3x3x1 supercell, the reorganisation energy of

0.59 eV is much greater. The density of states and IPR for both the hole and electron

polaron can be found in Figure 3.11.
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3.2.2.2 Electron polaron

Upon nuclear relaxation the excess electron in the 313 supercell localises across a

single parallel spin layer composed of three iron atoms, a result of interaction with

periodic self-images of the excess charge. The larger 613 supercell (Figure 3.9) is

able to avoid these finite size effects with twice the number of atoms in this direction,

leading to a two iron site delocalisation with equal changes in spin moment of 0.24

and an average change in bond lengths of +0.063 Å and +0.064 Å. The reorganisation

energy for the 613 supercell is 0.36 eV, higher than that for hematite of 0.23 eV.

3.2.3 Goethite α−FeOOH

Goethite is the most thermodynamically stable iron oxyhydroxide, isostructural

with diaspore. In contrast to lepidocrocite, goethite is not a layered structure but

one based upon oxo-bridged double-chains of iron octahedra. While experimental

band gap data ranges from 2.1-2.5 eV, recent experiments favour 2.5 eV [64] which

is reproduced with HSE06(18%). In addition to the same HFX value, the same

supercell sizes are also constructed from experimental data to ensure fair comparison

of the two polymorphs lepidocrocite and goethite [107].

The neutral geometry optimisation of goethite has been challenging, as the

structure becomes easily distorted along the Fe-O chains. The O-H bond lengths

from x-ray diffraction experiments are calculated as 0.88 Å, while the HSE06(18%)

optimised value is 0.99 Å. This is in agreement with other computational studies

[120], and is attributed to lack of sensitivity to hydrogen atoms present in x-ray

diffraction experiments. It has been confirmed that the hydrogen bonding distances

are not strongly dependent on the inclusion of the D3 dispersion correction.

3.2.3.1 Hole polaron

The HOMO of goethite in Figure 3.12 is consistent with the other iron oxides studied,

a mixture of O(2p) and Fe(3d) orbitals. The structure of the hole polaron however is

very different, remaining fully delocalised even after nuclear relaxation. The density

of states and IPR for both the hole and electron polaron can be found in Figure 3.15.

In order to verify the delocalisation of the electron hole a number of different
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Figure 3.12: Excess hole in goethite: (A) HOMO, (B) difference in spin density for ver-
tical state, and (C) the relaxed state. The excess hole in goethite does not
localise, with no qualitative difference between the vertical and relaxed states.
Bond lengths between the iron site and coordinated oxygen atoms are shown
in Angstrom. Data for a 313 supercell of bulk goethite calculated with
HSE06(18%), viewed perpendicular to the AFM layers along the (001) plane.
AFM spin orientation is indicated by arrows to the left of the figure.

Figure 3.13: Excess hole in goethite: (A) Difference in spin density for the relaxed excess
hole calculated at 50% HFX, (B) restarted at 18% HFX and (C) re-optimised
at 18% HFX.

initial conditions have been tested, including restarting the optimisation from a

localised state from a higher percentage of HFX. While increasing the amount of

HFX to 50% does not lead to spontaneous localisation for the 316 supercell, for

the smaller 313 supercell the excess hole delocalises across a row of oxygen atoms.

A similar dependency on the fraction of HFX has been observed in hematite and

lepidocrocite, as well as in the literature [28], where at high values of HFX the hole

localises over oxygen atoms. Figure 3.13 shows how restarting this localised state

at 18% HFX immediately results in delocalisation of the excess hole. Following

nuclear relaxation, the hole fully delocalises across the parallel spin layers with a

relaxation energy of ~1 eV.

A final confirmation of the lack of excess hole localisation in goethite can be

found from an analysis of the local force constants, where in the vertical state each

unique oxygen atom is displaced up to 5% (around 0.1 Å) along the corresponding
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Figure 3.14: Excess electron in goethite: (A) LUMO, (B) difference in spin density for
vertical state, and (C) the relaxed state. The excess electron relaxes onto two
parallel spin iron sites, with a positive increase in spin density caused by the
addition of an anti-symmetric spin. (B) and (C) are shown centred on the
localisation atoms, as these are on the supercell edge. An alternative view of
the goethite electron polaron structure can be found in Figure 3.10, highlighting
the 2-site delocalisation. Data for a 316 supercell of bulk goethite calculated
with HSE06(18%).

Figure 3.15: Excess electron and electron hole in goethite: (A-B) Density of states and (C-D)
IPR demonstrating the fully delocalised hole (A, C) and the 2-site delocalised
electron polaron.

Fe-O bond. For both the neutral and excess hole state these fit well to the harmonic

approximation ∆E = 1
2k∆r2 (RMSE <2 meV). This is is strong contrast to lepi-

docrocite, where for the excess hole there is a decrease in energy for displacement

along the Fe-O-Fe bonds up to 0.06 Å (same spin plane) and 0.02 Å (out of spin
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plane). The attractive region present in lepidocrocite demonstrates how the decrease

in local bond lengths leads to a lower energy localised state, which does not occur in

goethite. A final result from this force constant analysis is that there is no decrease

in energy for displacement of the Fe-OH bonds in lepidocrocite, suggesting that

the energy penalty for disrupting the hydrogen bonding framework is greater than

the decrease in energy from polaron formation. This appears to be the case in both

lepidocrocite and goethite. See Section 3.3.2 for further discussion.

3.2.3.2 Electron polaron

Similar to lepidocrocite, the localisation of the excess electron in the larger 316

supercell results in a two iron site delocalisation with changes in spin moment of

0.25 and 0.26 (Figure 3.14). The subsequent reorganisation energy is 0.35 eV, very

similar to that of lepidocrocite at 0.36 eV.

3.2.4 White rust Fe(OH)2

White rust is a highly unstable iron oxyhydroxide, isostructural with brucite, with a

layered structure of iron atoms in octahedral coordination with oxygen separated by

non-bonded hydrogen atoms [121–124]. In contrast to previous oxides all iron atoms

have formal oxidation state (II) rather than (III) in the neutral state, and therefore

only the electron hole polaron is considered. To the best of the authors knowledge

this is the first work to perform DFT calculations of white rust, although Rosso

and co-workers have studied white rust with a similar methodology to their cluster

calculations of hematite using HF [125].

While the crystal structure and antiferromagnetic spin pattern have been deter-

mined experimentally [108], the band gap has not been verified. From the white

colour it should be expected that the band gap exceeds 3.1 eV (violet light), and an

experimental study using ultraviolet–visible spectroscopy indicates that the band

gap may be around 3.5 eV [126]. As such white rust has been examined using a

range of HFX values, including 29% which reproduces the band gap of 3.5 eV. An

alternative approach would be to minimise the non-linearity (see Chapter 2.2.1),

however this appears to favour low fractions of HFX with a band gap lower than 3.1
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Figure 3.16: Excess hole in white rust: (A) HOMO, with asymmetry caused by degeneracy
(<0.5 meV) between the top two HOMO levels. (B) Difference in spin density
for vertical state, and (C) the relaxed state. The excess hole relaxes onto a
single iron site, where the positive increase in spin density is indicated by
yellow isosurfaces and negative by blue isosurfaces. Bond lengths between
the iron site and coordinated oxygen atoms are shown in Angstrom. Data for
a 3x3x2 supercell of bulk white rust calculated with HSE06(29%), viewed
perpendicular to the AFM layers along the (100) plane. AFM spin orientation
is indicated by arrows to the left of the figure.

Fraction of HFX 18% 25% 29% 50%
Band gap / eV 2.5 3.1 3.5 5.4
Non-linearity / eV 0.03 0.12 0.18 1.25
Reorganisation energy / eV 0.08 0.38 0.47 0.63
Change in Fe-O bond lengths / Å -0.035, -0.019 -0.090 -0.090 -0.097
Change in Fe spin moment 0.24, 0.17 0.59 0.62 0.72

Table 3.3: Band gap, non-linearity, reorganisation energy, changes in bond lengths and spin
moments for localisation of an excess electron in white rust as a function of the
fraction of HFX. With HSE06(14%) the excess electron is fully delocalised with
a band gap of 2.1 eV, while with HSE06(18%) the excess electron is delocalised
over 2 iron atoms and from HSE06(25%) to HSE06(50%) the excess electron is
localised on a single iron atom.

eV. For completeness, I provide a summary of all white rust calculations including

the band gap and non-linearity in Table 3.3.

The mixed spin state and non-bonded interactions make white rust an extremely

challenging system to model, requiring very tight wavefunction convergence and a

robust conjugate gradient optimiser. As such, the available system size is limited to

a 90 atom 3x3x2 supercell. A careful optimisation for the neutral state results in a

structure in good agreement with experiment [108], the only notable difference with

the increase in O-H bond lengths from 0.90 Å to 0.96 Å.
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Figure 3.16 shows the HOMO of white rust, composed of entirely Fe(3d)

character. At 14% HFX, with a band gap of 2.1 eV, the excess hole fully delocalises.

As the percentage of HFX increases the excess hole converges to the single iron

site localisation, where Figure 3.16 shows the results at 29% HFX with a change in

spin moment of 0.62 and a reorganisation energy of 0.47 eV. I note that the residual

forces could only be converged to 0.08 eV/Å, which may be exacerbated by the

small supercell size where only up the nearest neighbour iron atoms are included.

3.3 Discussion
A comparison of all results for hematite, lepidocrocite, goethite and white rust can

be found in Table 3.4.

In the original publication of this work [103] I stated that as calculations become

unfeasible for supercells larger than the ones used here, the computed reorganisation

energies need to be corrected for finite size effects. However, by including the results

for the 4x4x1 hematite supercell used in later calculations of the electron and hole

mobility [104] it would appear that the finite size effects were overestimated. The

reorganisation energy can be partitioned into inner-sphere λi and outer-sphere λo

contributions: the inner-sphere accounts for the local changes in bond lengths, while

the outer-sphere accounts for the polarisation of the surrounding environment [127]:

λ = λi +λo. (3.4)

It is the outer-sphere reorganisation energy contribution that generally needs to

be corrected for finite size effects. My later work [104] (see Chapter 4) indicated

that the inner sphere reorganisation energy is actually overestimated in the smaller

supercells, which compensates for the reduced outer-sphere reorganisation energy.

As such, in assuming that only the outer-sphere reorganisation will change and

extrapolating to infinity with only two supercell sizes I had obtained an overestimate

of the reorganisation energy. For lepidocrocite and goethite I have only calculated

a single reorganisation energy for the excess electron, and therefore in this thesis I

have chosen to not to include any finite size corrections.
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Another concern can be image charges, that due to the use of periodic boundary

conditions the localised polaron will interact with periodic self-images. This effect

can be seen in the use of smaller supercells for lepidocrocite and goethite, where

the excess electron fully delocalises across a row of iron atoms rather than forming

the 2-site delocalised structure found in larger supercells. There are a number of

methodologies to attempt to correct for the effect of image charges [34,128], however

in the context of this work I assume that the use of large supercells for materials

with large dielectric constants results in a negligible contribution of image charges

to the reorganisation energy. As seen in Table 3.4, there is a negligible change in

reorganisation energy with increasing supercell size for hematite which supports this

assumption.

3.3.1 Electron two site delocalisation.

Much of the current understanding of electron small polaron formation originates

from pioneering cluster model calculations supporting the view that the excess elec-

tron is localised on a single iron atom [15–18]. Twenty years on, such calculations

can now be carried out for extended supercells in periodic boundary conditions,

which removes some of the well-known deficiencies of cluster models: the presence

of artificial hydrogen atoms necessary for termination of the dimer cluster; and the

neglect of strain effects present in the bulk crystal. Moreover, HF, which tends to

overbind excess electrons is replaced with a hybrid functional with empirically tuned

exact exchange. The result is a significantly smaller reorganisation energy to the

extent that the excess electron localises over two rather than one iron atom. Similar

cluster model calculations in this work using HSE06(12%) give reorganisation ener-

gies more than twice as large as in the bulk, indicating that it is mostly the missing

steric strain in the cluster models that cause the large reorganisation energies.

Viewed from the perspective of electron transfer theory (i.e. in the diabatic

representation of electronic states), my results mean that the electronic coupling

matrix element, Hab, between between Fe(II) and Fe(III) is greater than half of the

reorganisation energy, which leads to instability of the diabatic states such that the

transition state of electron transfer theory becomes the minimum [39]. See Chapter
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4 for further discussion.

I note that there are some conceptual similarities between this 2-site delocalised

electron polaron and both bipolarons [129, 130] and molecular polarons [131],

where two excess electrons may overcome their Coulombic repulsion to form a

2-site localised structure or a dynamically coupled complex. In Chapter 4 I will

demonstrate that the 2-site delocalised electron polaron hops through the hematite

crystal as a single unit, similar to the process of bipolaron diffusion [129].

3.3.2 Hole delocalisation in goethite.

One of the most surprising findings of this work is that the excess hole does not

localise in goethite. The density of states for the two polymorphs lepidocrocite

and goethite are very similar, and so this is not due to a lack of available states for

localisation but instead a consequence of the extended hydrogen bonding framework.

In lepidocrocite there are two distinct oxygen environments: the hematite-like

oxygen atoms within the layers with four O-Fe bonds, and the hydrogen bonded

oxygen atoms linking the layers with two O-Fe bonds and two hydrogen bonds. It is

found that these hematite-like oxygen atoms undergo a larger change in bond lengths

and spin moment in comparison to the hydrogen bonded oxygen atoms, due to the

inflexible hydrogen bonding framework in the charged state. Indeed, from force

constant analysis there is no decrease in energy for displacement of the Fe-OH bonds

in the vertical state for lepidocrocite. This effect is more pronounced in goethite,

where every oxygen atom is hydrogen bonded. The energy gained from polaron

formation in hematite is around 8 kcal/mol, on the same energy scale as that of

a hydrogen bond (5-10 kcal/mol). Therefore in goethite there are two competing

effects: the lowering of energy due to polaron formation, and the energy cost of

disrupting/breaking the extended hydrogen bonding framework. As such, the excess

hole remains delocalised in goethite.

This hole delocalisation in goethite should be experimentally testable, as the

band conduction of holes would have a temperature dependence that does not fit the

classical small polaronic hopping model. I note that in a similar semiconductor with

photocatalytic water splitting applications, bismuth vanadate BiVO4, standard gap-
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optimised hybrid functionals also predict a delocalised hole polaron. For bismuth

vanadate experimental resistivity measurements do show a temperature dependence

consistent with the small polaron model [132, 133], however without optimisation

to reproduce the experimental band gap it is unclear what value of HFX should be

chosen [134, 135].

3.3.3 Trend of reorganisation energy.

Before I discuss reorganisation energy of the oxides in more detail, I note that they are

much smaller (~0.5 eV) than for transition metal ions in aqueous solution [136–138]

(about 2-3 eV). The difference is most likely related to the contrast between the steric

strain of the crystal environment compared to the higher degrees of conformational

freedom among solvating water molecules as well as the significantly higher optical

dielectric constant of the iron oxides compared to water.

While it has been found that the extent of excess charge localisation is similar

across the studied iron oxides, there are differences in the reorganisation energies

that merit discussion. Hematite has consistently the lowest reorganisation energy

and average change in bond lengths of the iron oxides, a consequence of the local

bonding environment. In hematite there are two distinct bond types around each iron

atom, splitting the iron bilayer into two distinct planes of iron atoms leading to Fe-O

bonds of 1.94 Å and 2.12 Å. This allows the excess hole or electron a large amount

of freedom to localise, which is not present in lepidocrocite or goethite where the

localisation is much more heavily restricted by the local bonding environment. This

can be seen clearly by comparing the localisation of the excess hole between hematite,

where the hole is able to localise freely over the oxygen atoms, to lepidocrocite

where the hole is forced largely onto only two oxygen atoms. As such, lepidocrocite

experiences a much larger hole reorganisation energy than hematite. White rust is

likely an intermediate between these two extremes, having less freedom than hematite

but more then lepidocrocite as the excess hole is forced to localise isotropically over

the six bonded oxygen atoms due to the hexagonal crystal symmetry.

Due to the reduced extent of localisation the reorganisation energy for the

excess electron is lower, by around a factor of 1.5. The same trend appears as for the
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excess hole, where the same change in spin moment is experienced but with a greater

reorganisation energy for lepidocrocite and also now for goethite. The localisation

of the excess electron in hematite across two iron sites within the same Fe-bilayer is

the cause for the smaller change in bond lengths, as in order to maximise the orbital

overlap between the iron atoms two of the longer Fe-O bonds contract (see Figure

3.4). The reorganisation energies for lepidocrocite and goethite differs only by 0.01

eV, and the smaller change in bond lengths for goethite is likely a result of the

interaction of the different spin layers. While the excess electron in goethite localises

partially over the oxygen atoms of the opposing spin layer, this occurs with no

change in bond length as this would have a high energy penalty. In lepidocrocite the

LUMO has greater overlap with the oxygen atoms in the ±b direction, and while the

oxygen atoms in this direction are more strongly associated with the opposing spin

layer there is still some contribution from this spin layer which allows for a change in

bond lengths. This is similar to hematite where the oxygen atoms are shared by both

spin layers. These findings are consistent with experimental observations, where

hematite has the highest electron mobility among the examined iron oxides.

3.4 Conclusions

In this Chapter both the electron and hole polaron structures and associated reor-

ganisation energies have been calculated for a series of bulk iron oxides. While the

polaron structures and extent of charge localisation remains largely consistent across

the studied iron oxides, except for the hole in goethite, hematite has consistently the

lowest reorganisation energy in agreement with its experimental electron mobility.

The calculation of hole polaron structures reveals a lack of localisation of the

excess hole for goethite, as a result of the energy penalty for disrupting the extended

hydrogen bonding framework. This may make this material a promising candidate

as a hole conducting material. It would be of interest to verify this prediction, such

as by temperature dependent hole conductivity measurements.

Electron polaron calculations consistently produce a two iron site delocalisation

of the excess electron for all studied iron oxides and oxyhydroxides, contrary to
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previous understanding of the electron polaron in these materials. Calculations from

hematite dimer clusters and 1D hematite chains have been demonstrated to lead

to an overestimate of the reorganisation energy and an overbinding of the excess

electron to a single iron site, and the importance of reproducing both the experimental

structural and electronic properties (i.e. band gap) has been emphasised. To the best

of my knowledge these are the most sophisticated calculations performed for these

materials, and as such these results should provide new and valuable insights into

the structure of charge carriers of importance for photocatalytic water splitting .



Chapter 4

Electron and hole mobilities in bulk

hematite

In this Chapter I calculate the electron and electron hole diffusivity and mobility for

bulk hematite. In particular, I would like to understand how the 2-site delocalised

electron moves along the lattice and how its mobility differs from that of the electron

hole. To this end, I calculate the electron transfer parameters and rates for electron

and electron hole transfer in hematite using CDFT. These calculations will provide

valuable insights into the mechanisms that lead to the sluggish transport of charge

carriers in hematite, relevant for increasing photocatalytic water splitting efficiency.

This work has been published in [104].

In this Chapter I present results for the electron hole polaron in Section 4.2.1

and for the electron polaron in Section 4.2.2. Charge mobilities are calculated in

Section 4.2.3, with an examination of finite size effects in 4.2.4 and a discussion of

the results in Section 4.3.
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4.1 Computational setup

As discussed in Chapter 3, the Hirshfeld spin moment of iron atoms is a suitable

descriptor for polaronic states. The spin moment changes from -3.95 to -3.29 for

the electron hole, and -3.95 to -3.72 for each of the two Fe atoms over which the

electron polaron is delocalized.

For electron hole transfer between two Fe atoms, FeA and FeB, I define the initial

(final) ET state as the spin constrained CDFT state with the spin moment on FeA (FeB)

constrained to -3.29. For electron transfer between two 2-site delocalized Fe pairs,

(Fe1-Fe2)A and (Fe3-Fe4)B I define the initial (final) ET state as the spin constrained

CDFT state with the spin moment on each of the two iron atoms Fe1 and Fe2 (Fe3 and

Fe4) constrained to -3.72. These constraints ensure that for any geometry (including

transition state geometry) diabatic states are obtained that resemble very closely the

DFT electronic ground state of the electron hole or electron polaron in the global

minimum energy structure.

Other definitions of the spin constraint would be possible. For instance, one

could include the first shell oxygen atoms but I found that their spin moment is rather

small and their inclusion in the constraint is not beneficial. Moreover, one could

constrain the spin density difference between donor and acceptor groups which is a

common choice in CDFT calculations [34]. However, I found that a single absolute

spin constraint on the Fe atoms in question is the most suitable choice in the present

case.

To setup the CDFT calculations, first the polaron is localised on each of the

desired iron atoms, typically by offsetting the local Fe-O bond lengths to encourage

polaron formation at this location. After geometry optimisation to form the charged

DFT ground state, linear interpolation is performed to create the transition state

geometries. These transition state geometries are then used to calculate both the

electronic couplings and reorganisation energies (Eq. 2.8) using CDFT. This is

performed by constraining the spin moment of the iron atoms to the spin moment of

the charged ground state given above, thus generating the diabatic electronic states

at the transition state geometry.



4.2. Results 70

Figure 4.1: Structure of hematite 2D mobility plane. 2x2x1 supercell spin density (left), with
a single AFM plane highlighted in black shown colour coded by distance from
a central iron atom 0 (middle). A single AFM plane truncated to third nearest
neighbours is shown (right). There are three first nearest neighbours (purple)
numbered 1-3 at a distance of 2.97 Å, six second nearest neighbours (blue)
numbered 4-9 at 5.04 Å and three third nearest neighbours (grey) numbered
10-12 at 5.87 Å.

4.2 Results

4.2.1 Hole polaron

The electron hole polaron, shown in Figure 4.2 is mainly localised on a single Fe

atom and to a lesser extent on 1st shell oxygen atoms. As explored in Chapter 3, the

hole polaron is stabilised by an octahedral distortion of the iron-oxygen bonds. There

is a contraction of four equatorial Fe-O bonds, and and a very slight expansion of

two axial Fe-O bonds. These changes in bond lengths are in response to the removal

of electron density in the equatorial plane, more specifically in response to removal

of an electron from a dx2−y2 orbital. Importantly, this tetragonally distorted structure

can be realised in three equivalent ways giving exactly the same electronic energy.

Each of these symmetry-related structures can be transformed into one another by

lattice vibrations. To the best of my knowledge this three-fold degeneracy of the

hole polaron has not been previously explored, and its effect on the mobility has not

been investigated.

Due to the 3-fold structural degeneracy, there are 3 x 3 = 9 possible transition

state structures for hole transfer between an Fe atom and any of the three nearest

neighbours. However, only 5 of these 9 combinations are unique featuring different



4.2. Results 71

Figure 4.2: Excess hole in hematite: 4x4x1 supercell excess spin density for ground state
hole polaron. A hole polaron localised on an iron atom has three degenerate
structures (A, B, and C) due to the octahedral distortion of the Fe-O bonds. The
entire supercell spin density is shown (top row), with a zoomed in image of the
hole polaron (bottom row). Bond lengths (top row) and differences with respect
to neutral hematite (bottom row) are shown between the iron atom and bonded
oxygen atoms in Angstrom.

Electronic coupling / meV
1(A) 1(B) 1(C)

0(A) 203 110 101
0(B) 110 53 39
0(C) 101 39 53

Table 4.1: First nearest neighbour electronic coupling for the hole polaron in bulk hematite,
accounting for all possible degenerate structures of atoms 0 and 1. All other
atom combinations can be inferred by symmetry, e.g. highest coupling direction
0(A)1(A) is equivalent to 0(B)2(B).

donor-acceptor orbital combination and electronic coupling, see Table 4.1, and

reorganisation and activation energy, Table 4.2. Note that the same set of 5 unique

electronic couplings exist for all 3 nearest neighbours.

The 5 unique nearest neighbour couplings can be placed into three groups shown

in Fig. 4.3: highest coupling (203 meV) where the polaron in initial and final ET

states has dx2−y2 orbitals aligned along the Fe-Fe direction shown in Fig. 4.3 (upper

row); moderate coupling (101, 110 meV) where in one polaronic state the dx2−y2
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Figure 4.3: Excess hole transition states: 4x4x1 supercell excess spin density for electronic
ground state, obtained from DFT calculations (left column) and for the diabatic
initial (middle column) and final hole transfer states (right column). The diabatic
states are obtained from CDFT with a spin constraint on the Fe atom 0 or 1
respectively, see Figure 4.1 for atom labelling. Only three of the five unique
transition state geometries for nearest neighbour hole transfer are shown, see
Table 4.2 for hole transfer parameters.
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orbital is aligned along the Fe-Fe direction shown in Fig. 4.3 (middle row); low

couplings (39, 53 meV) where in neither polaronic state the dx2−y2 orbital is aligned

along the Fe-Fe direction shown in Fig. 4.3 (lower row). The slight differences

within these groups (e.g. 0(A)1(B) and 0(A)1(C)) are a result of the asymmetry of the

Fe-bilayer. In addition to the electronic couplings the reorganisation energies of the

5 unique combinations are also slightly different, refer to Table 4.2.

Similar considerations apply for second nearest neighbours and beyond. How-

ever, as accounting for every structural combination of the hole polaron for all of the

second and third nearest neighbours would become too computationally demanding,

I choose to only consider these for the (A) orientation of the hole polaron. As Table

2 shows, the decay of the electronic coupling with distance and the increase in reor-

ganisation energy is such that the interaction of the hole polaron with its second and

third nearest neighbours is negligible. This means that only nearest neighbour charge

transfer processes are important for the hole polaron in bulk hematite, consistent

with work from other groups [15, 18].

4.2.2 Electron polaron

In Chapter 3 I showed that the excess electron in hematite is delocalised over two

neighbouring iron sites in the DFT electronic ground state. According to electron

transfer theory, this suggests that electronic coupling between 1-site localised excess

electronic states is so large that they are are no longer stable states, as they no longer

correspond to a minimum of the ground state potential energy surface. This is the

case when Hab > λ

2 [39]. I are now in a position to verify this hypothesis using

CDFT.

Indeed, using CDFT to constrain the excess electron on a single Fe atom, I

obtain a very large coupling value of 407 meV (4x4x1 supercell), while an upper

limit for reorganisations energy for nearest neighbour hopping of a 1-site localised

polaron from Chapter 3 is 0.68 eV, hence Hab >
λ

2 . Thus, both DFT calculation of

the electronic ground state (adiabatic representation) and CDFT calculations of spin-

localised states (diabatic representation) suggest that the 1-site localised electron

polaron is unstable and delocalises over 2 adjacent sites.
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Figure 4.4: Excess electron in hematite: 4x4x1 supercell excess spin density for ground
state electron polaron. As the electron polaron is localised across two iron atoms,
for any combination of first nearest neighbours, the structures are degenerate.
The entire supercell spin density is shown (top row), with a zoomed in image of
the electron polaron (bottom row). Bond lengths (top row) and differences with
respect to neutral hematite (bottom row) are shown between the iron atom and
bonded oxygen atoms in Angstrom.

Considering a given iron atom “0", delocalisation can occur over one of the

three first nearest neighbours of 0: either (0,1); (0,2) or (0,3) (see Fig. 4.4 for

numbering scheme). These states are energy degenerate due to the symmetry of

the lattice. There are several possible charge transfer events of 2-site delocalized

electron polaron. The shortest transfer (2.97 Å between centres of excess spin)

includes the transitions: (0,1)-(0,2); (0,1)-(0,3) and (0,2)-(0,3) where (0,1)-(0,2)

denotes the electron transfer from the 2-site delocalized state (0,1) to the 2-site

delocalized state (0,2), and similarly for the other electron transfers. All of these

three electron transfers are equivalent by symmetry. The coupling between these

adjacent states of 26 meV is surprisingly small given that they share an Fe atom with

significant excess spin density in both states. The reason is that the Fe t2g orbital

carrying the excess spin density is rotated by 120 degrees with respect to one another

in the two diabatic electronic states, see Figure 4.5 (upper row). This results in a

small overlap of the two (non-orthogonal) diabatic CDFT electronic wavefunctions

and thus a small electronic coupling.
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Figure 4.5: Excess electron transition states: 4x4x1 supercell excess spin density for elec-
tronic ground state, obtained from DFT calculations (left column) and for the
diabatic initial (middle column) and final electron transfer states (right column).
The diabatic states are obtained from CDFT with a spin constraint on the two
Fe atoms as indicated, see Figure 4.1 for atom labelling. The first row is for
electron transfer over the shortest distance (2.97 Å) and the second to fourth row
for electron transfer over the second shortest distance (5.04 Å). See Table 4.2
for electron transfer parameters.

Transfers over the next largest distances (5.04 Å between the centres of excess

spin) includes the transitions: (0,2)-(1,6), (0,2)-(1,7) and (0,1)-(5,11) as shown in

Fig. 4.5. The highest coupling of 57 meV is found for combination (0,2)-(1,6) where

the Fe t2g orbitals which the excess electron occupies are orientated parallel. While
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the combination (0,1)-(5,11) has the same centre of mass distance, the iron atoms do

not share Fe-O bonds as for the other two transition states and as such the coupling

is the lowest of the three. Refer to Table 4.2 for all electron transfer parameters.

4.2.3 Electron hole and electron mobilities

The three structurally degenerate states of the hole polaron are expected to intercon-

vert fast, on the time scale of the high frequency lattice modes (∼ 1013 s−1). As such,

I perform a Boltzmann average over the electronic couplings and reorganisation

energy for the 9 possible transitions i, with weights proportional to exp(−βλi/4),

and use the averages for calculation of a nearest neighbour hopping rate (Eq. 2.1).

The latter is ∼ 1012, slow enough to support degenerate mixing of hole states by

phonons. The rates for second and third nearest neighbour hops are orders of magni-

tudes smaller showing that only first nearest neighbour hops are important for hole

polaron transport.

Table 4.2 gives the hole mobility for bulk hematite in the 2D (Fe bilayer) plane

at room temperature, calculated by solving a chemical master equation to get the

MSD and diffusion coefficient (Eq. 2.10) as by Giannini et al. [41]. Inclusion of the

six second nearest neighbours and three third nearest neighbours of the hole polaron

increases the mobility only from 3.08×10−2 to 3.10×10−2 cm2/Vs. To the best of

my knowledge this is the first calculation of a mobility tensor in hematite, which

fully accounts for the effect of the 2D conduction environment.

For the electron polaron, I consider both the three transitions over the shortest

possible distance and the transition over the next largest distance having the highest

electronic coupling. Due to the 2-site delocalised electron polaron structure, there

are only four symmetry related second nearest neighbours to which the polaron may

hop. This introduces a similar complication to the hole polaron, that for a single

energy degenerate structure of the electron polaron the mobility is locally anisotropic.

As there are three energy degenerate structures for a given electron polaron, the

overall mobility remains isotropic. The electron mobility calculated for hopping to

first nearest neighbours is 2.0×10−2 cm2/Vs while for second nearest neighbours is

7.8×10−2 cm2/Vs, as a consequence of how the coupling for first nearest neighbours
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is smaller than for second nearest neighbours due to unfavourable orientation of

orbitals. Accounting for both the first and second nearest neighbour contributions to

the diffusion coefficient gives a total mobility of 9.8×10−2 cm2/Vs. Hops across

larger distances are not expected to contribute to electron mobility as the electronic

coupling for those decays very quickly. I note that the hopping activation energy of

80 meV is much smaller than the ionisation energy into the valence band.

4.2.4 Finite size effects

The results shown in this Chapter are for the 4x4x1 supercell of hematite, with a total

of 480 atoms and 4800 electrons. It could be argued that the 2x2x1 supercell (120

atoms, 1200 electrons) is large enough for the first nearest neighbour interactions.

Table 4.3 shows that this is true for the weak coupling directions, but not for the

highest coupling direction for which I observe a non-negligible increase from 167

to 203 meV. I analysed the origin for this by preparing a transition state geometry

in the 2x2x1 supercell that has exactly the same geometry as the one obtained for

the 4x4x1 supercell. The coupling is virtually identical in both cases which means

that the increase in coupling going from the 2x2x1 to the 4x4x1 supercell is due to

a slightly different geometry of the transition state structure in the 4x4x1 supercell

(rather than due to other finite size effects such as, e.g., polarisation effects due to

polaron images). The slight differences in nuclear relaxation are also indicated by a

small decrease in reorganisation energy going from 2x2x1 to 4x4x1, which I attribute

to a smaller reorganisation of the first coordination shell ("inner sphere") in the larger

supercell.

Use of a 4x4x1 supercell is essential for the calculation of ET parameters for

third nearest neighbours for the hole and second nearest neighbour for the electron

polaron. This supercell should be large enough as the distance to the third nearest

neighbour of the hole polaron is a factor of 3 smaller than to the distance to the

closest periodic image. Remaining finite size effects could not be investigated as

supercells larger than 4x4x1 are computationally unfeasible at the moment.
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Supercell size
2x2x1 4x4x1 2x2x1 4x4x1

Neighbour Hab / meV λ / meV
0(A)-1(A) 167 203 843 652
0(A)-1(B) 36 39 1012 881
0(A)-1(C) 51 53 1035 865

Table 4.3: Comparison of first nearest neighbour electronic coupling and reorganisation
energy for the hole polaron, 2x2x1 and 4x4x1 supercells.

Figure 4.6: Finite size effects of the hole polaron. Isosurface of CDFT weight function,
showing that the distance between the third nearest neighbour of 5.9 Å is a factor
of three smaller than the distance to the periodic image of this charge (15.4 Å).

4.3 Discussion
Table 4.2 shows a comparison of my calculated and literature results, with Figure

4.8 showing this comparison plotted as mobility against temperature. A direct

comparison of different mobility calculations is difficult due to the different methods

used, and therefore I alleviate this somewhat by comparing to mobilities obtained

according to Equations 2.1-2.11 using the reported literature values for electronic

couplings and reorganisation energy. A simplified schematic for both hole and

electron polaron hopping is shown in Figure 4.7.

Rosso and co-workers [15,18] performed Hartree-Fock calculations of both hole

and electron mobility for small hematite clusters, considering up to second nearest
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Figure 4.7: Polaron structures and hopping mechanisms. Excess spin density (top row) for
the electron and electron hole polarons, simplified hopping schematic (bottom
row) showing the hopping of the 1-site localised hole polaron and the 2-site
delocalised electron polaron.

neighbours. Both their couplings and reorganisation energies tend to be considerably

higher resulting in larger activation energies and lower mobilities for both electrons

and holes. Though, one early estimate reported by Rosso and co-workers [15] for

electron mobility is within a factor of 1.6 of my current best estimate. In Chapter 3 I

attributed the larger reorganisation energy of cluster models to the absence of lattice

strain effects present in the bulk structure, as well as the use of Hartree-Fock which

tends to overbind excess charge.

Adelstein et al. [43] and Behara et al. [142] calculated electron mobilities using

a similar approach as in this work with a 2x2x1 supercell, but using DFT+U in

place of hybrid CDFT to model the polaronic states. Their reorganisation energies

are similar, albeit slightly higher than mine and significantly smaller than typical

values for cluster models. In fact, Behara reported values for bulk hematite around

half of that for the 1D chain [142]. Their electronic coupling values are also very
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Figure 4.8: Mobility as a function of temperature. Literature calculated mobilities indicted
with solid filled markers, doped experimental mobilities as unfilled markers. My
results are valid below the Neel temperature (T=955 K) [139], indicated with a
dashed line.

similar to my estimates but this is a coincidence as my electronic polaronic states

are 2-site delocalized whereas theirs are localised on a single iron atom. The 2-site

delocalisation also permits larger transfer distances for a single hop resulting in

higher mobilities than the 1-site localised polaron (see R2 dependence, Eq. 2.10).

This is partly the reason for the higher electron mobilities that I obtain in this current

work compared to Adelstein et al. and Behara et al. Interestingly, Adelstein et al. in

their calculations did find that there was some degree of delocalisation of the electron

polaron over two iron atoms, identified from both a shorter Fe-Fe bond length and

from the magnetic moment.

While other groups have attempted a justification of their results via comparison

to experiment, this is problematic as there are no experimental results for the mobility

of pure (undoped) hematite. The available experimental mobilities are all for doped

hematite, sometimes for temperatures above the Neel temperature where hematite
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is no longer anti-ferromagnetic (955 K) [139]. Further, as there are no direct

measurements of either the reorganisation energy or couplings there are multiple

combinations of each that would compare well with the observed mobilities.

The most suitable experimental data for comparison are probably the ones

reported by Zhao et al [145] for electron mobility in 3% and 5% Ti-doped hematite.

These values are within a factor of 2.5 of my computed mobilities for pure hematite,

which is reassuring despite the above mentioned caveats.

4.4 Conclusion

In this Chapter both the electron and hole mobility has been calculated for hematite

using spin-constrained gap-optimised hybrid density functional theory with large

supercells. Where previous studies have only considered coupling between a single

nearest neighbour or a single orientation of the polaron, I account for all possible

degenerate polaron structures and coupling with up to third nearest neighbours. In

addition, for the first time the mobility is calculated for the full 2D Fe bilayer rather

than for a 1D model.

The CDFT calculations provide further evidence that the excess electron is

delocalized over two iron sites and hops across the hematite crystal as a two-site

delocalized polaron. While the activation energy for these hops is slightly higher,

the hopping distance is larger than for the 1-site localised hole polaron. As a

consequence, the electron mobility is predicted to be a factor of 3 higher than the

hole mobility.

Charge transport has been identified as a key issue for the use of hematite in

a number of technological applications, especially in photocatalysis and photoelec-

trochemistry [6, 9, 11, 146]. This Chapter provides a comprehensive and detailed

understanding of the physical mechanisms that lead to the sluggish transport of

charge carriers in bulk hematite. This sets the scene for similar calculations at the

hematite/liquid water interface (see Chapter 5). In particular, it will be important

to understand if and how the presence of water at the interface changes the picture

obtained for the bulk material and how this depends on the specific surface cut under
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investigation and the protonation state of the surface [100]. Such investigations,

which my work has now made possible, could help refine models, and resolve ongo-

ing questions, about rate-limiting transport processes governing photocatalytic water

splitting efficiency at hematite/water interfaces [11, 146].

I have shown in this Chapter that CDFT is a useful tool for the prediction of

charge mobilities in an ubiquitous oxide material. The method is generally applicable

to semiconducting materials and may be applied to other oxides of technological

interest for the study of intrinsic charge transfer processes or for charge transfer

between defects. Moreover, the CDFT approach is well suited for the study of

interfacial charge transfer processes between different semiconductors or between

semiconductor electrodes and liquids. It could thus become an essential tool for the

emerging field of ab-initio electrochemistry [147].



Chapter 5

Implementation and validation of

CDFT forces

Recently CDFT has been implemented in the CP2K simulation package [84, 90],

however the CDFT forces required for CDFT geometry optimisation and molecu-

lar dynamics simulation are currently only available for Becke partitioning of the

electron density. Therefore, in this Chapter I present the implementation of CDFT

forces arising from the more robust Hirshfeld partitioning scheme of the electron

density. I find that CDFT is a powerful tool for the calculation of electron transfer

parameters at a reasonable computational cost. This work has recently been accepted

for publication [148].

In this Chapter I first discuss the motivation for Hirshfeld based CDFT and

provide the necessary force terms, Section 5.1, before presenting validation and

benchmarking for both CDFT geometry optimisation (Section 5.2.1) and CDFT

molecular dynamics (Section 5.2.2). An example of systems for which CDFT

calculations can be problematic is shown in Section 5.2.3, and a discussion of the

general reliability of condensed phase CDFT calculations is presented in Section

5.2.4.
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Atom Becke Hirshfeld
O 0.84 -0.30
H -0.42 0.15

Table 5.1: Atomic charges for a neutral water molecule according to different partitioning
schemes. Becke charge partitioning produces qualitatively incorrect charges,
with a large positive charge on the oxygen atom in contrast to the small negative
charge from Hirshfeld charge partitioning.

5.1 Theory and implementation

In recent years there have been several new implementations of CDFT in popular

DFT packages [20, 33, 84–88, 149, 150], which generally follow the seminal work by

Wu and Van Voorhis [151]. As outlined in Chapter 2.3, a Lagrangian multiplier is

introduced to search for an external potential applied to the Kohn-Sham Hamiltonian,

performed self-consistently with a second iteration loop in addition to that of a

standard DFT calculation. The definition of this external potential introduces a

weight function, describing the partitioning of electron density (or charge). In their

earlier work [151] Wu and Van Voorhis utilised the Lowdin atomic population

scheme [152], later recommending real space partitioning schemes of the electron

density, in particular Becke partitioning [153]. As a purely geometric approach that

divides space equally between all atoms, Becke partitioning of the electron density

avoids any issues with basis set convergence found for Lowdin or Mulliken atomic

charge partitioning [80]. An alternative real space partitioning scheme is the one

according to Hirshfeld [113] where molecular electron density is assigned to atoms

in proportion to their promolecular density, thus accounting for their different sizes.

Table 5.1 demonstrates the problem of equally dividing space between all atoms

as done in Becke partitioning, that for a water molecule the oxygen atom becomes

positively charged and the hydrogen atoms become negatively charged. This is

in direct contrast to Hirshfeld charge partitioning, which predicts a qualitatively

correct charge distribution. The qualitative failure of Becke charge partitioning in

heteronuclear systems is well known [153], where it is common to define atomic

size adjustments based on either covalent or ionic radii [84]. Such introduction of

empirical parameters is undesirable, with significant ambiguity in their choices. I
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note that an approximation made in Hirshfeld partitioning is in the use of neutral

atomic densities to calculate the weight function, although it is possible to apply this

to charged densities via an iterative extension of Hirshfeld partitioning (Hirshfeld-

I) [154]. To the best of my knowledge there are no CDFT implementations which

use Hirshfeld-I, or any other charge partitioning scheme more sophisticated than

standard Hirshfeld partitioning.

In CDFT the total force on an atom i is given by

Ftot,i = Fi +Fci, (5.1)

where Fi is the usual force arising from the unmodified DFT functional E[ρ] and Fci

is the additional force arising from the constraint. The latter is given by

Fci =−V
∫

ρ(r)
∂w(r,R)

∂Ri
dr. (5.2)

The derivative of the weight function can be shown to be [33]

∂w(r)
∂Ri

=
δ −w(r)

∑J ρJ(r - RJ)

∂ρi(r - Ri)

∂Ri
, (5.3)

where

δ =


1 i ∈ D

−1 i ∈ A

0 i /∈ D∪A.

(5.4)

The derivative of the density is given by [33]

∂ρi(r - Ri)

∂Ri
=

∂ρi(|r - Ri|)
∂Ri

=
∂ρi(|r - Ri|)

∂ |r - Ri|
r - Ri

|r - Ri|
. (5.5)

In CP2K the atomic densities ρi are calculated by performing a DFT calculation

on the isolated atoms, and fitting a minimal Gaussian basis set to this density. As such,

the radial derivatives are known analytically. The calculation of the atomic densities

and their derivatives is performed only once per atomic species, and therefore the
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Figure 5.1: (A) Verification of analytical forces against forces calculated from centred finite
differences of the total energy for a helium dimer, both with (right) and without
(left) periodic boundary conditions. For the system under periodic boundary
conditions, the helium dimer interacts at the same distance except with their
periodic image and therefore the resultant force is the same. An isosurface of
the weight function is shown on the bottom left of each figure.

computational cost is negligible.

To both ensure numerical stability and to further reduce the computational cost,

an adjustable cutoff is introduced for the denominator of Eq. 2.19. When the total

promolecular density is smaller than 1×10−12e the weight function is set to zero.

Similar numerical cutoffs can be found in other implementations of CDFT based

on Hirshfeld partitioning of the electron density [88]. I have verified that the total

energy and forces are insensitive to this choice of cutoff.

A simple test of the implementation of the constraint force and Hirshfeld

partitioning can be performed by checking that the total force is equal to the force

calculated from finite differences of the minimised energy functional W [ρ,V ] subject

to the density constraint. Such a comparison is performed for the helium dimer He+2 .

The difference in the force obtained from Eq. 5.1 and the finite difference calculation

is 4.7×10−5 H/Bohr, similar to that obtained from other CDFT implementations

[88].

5.2 Results
I present validation and benchmarking of the CDFT force implementation for both

geometry optimisation (Section 5.2.1) and molecular dynamics (Section 5.2.2), for a

variety of systems. Through considering a wider selection of systems than previous
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DFT (isolated) DFT CDFT
(O1 −H1)

+ / Å 1.017 0.988 1.017
(O1 −H2)

+ / Å 1.017 0.989 1.017
θ
+
HOH 108.51 105.91 108.50

(O2 −H3) / Å 0.970 0.988 0.971
(O2 −H4) / Å 0.970 0.985 0.971

θHOH 104.17 105.95 103.94

Table 5.2: Geometry optimisation of a water dimer (H2O)+2 in vacuum at a distance of 10 Å.
With the use of CDFT to form the charge localised state H2O+-H2O, the bond
lengths and angles of the isolated H2O+ and H2O molecules are reproduced. In
comparison, standard DFT predicts that the excess hole is equally delocalized
over both molecules and the geometry of the two molecules is the same.

work, I am also able to discuss the general reliability of condensed phase CDFT

calculations (Section 5.2.4).

5.2.1 CDFT geometry optimisation

5.2.1.1 (H2O)+2 in vacuum

Charged dimers or molecular clusters are a well known problem for standard DFT

functionals [50]. The electron delocalisation errors tends to favour charge delocali-

sation over charge localisation, in particular for situations where both these states

are energy degenerate in exact theory, e.g. in a charged molecular dimer at the

dissociation limit. CDFT can be used to correct this error. In the following I consider

the water dimer cation, creating the charge localised state H2O+-H2O by imposing a

charge difference constraint of Nc=1e between the donor (H2O) and acceptor (H2O+)

regions using the Hirshfeld weight function Eq. 2.19. The constraint is converged

until the residual error is less than 1×10−4e, with a energy gradient of 1×10−6 Ha.

Calculations are performed in vacuum for a centre of mass distance of 10 Å, with the

PBE-D3 functional [46, 155]. Geometry optimisation is converged until the residual

forces are smaller than 0.02 eV/Å. Unless specified otherwise these values were used

for all systems studied in this work.

Table 5.2 shows the DFT optimised geometries of the isolated H2O+ and H2O

molecules, confirming that CDFT geometry optimisation of the charge localised

state H2O+-H2O reproduces these geometries for the large water-water separation of
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Figure 5.2: Oxygen defects in MgO. Excess spin density for: (A) DFT adiabatic ground
state and (B) CDFT diabatic state on the adiabatic ground state optimised
geometry with a defect separation of 12.76 Å. The increase in spin density
(yellow) is composed of a s-like function at the defect site and the p-orbitals of
the surrounding oxygen atoms.

10 Å, as it should do. Not surprisingly, DFT predicts that the excess hole is equally

delocalized over both molecules and the geometry of the two molecules is the same,

between the one for neutral water and the water radical cation, i.e. H2O0.5+-H2O0.5+.

Similar results are found for CDFT-MD performed at 300 K.

5.2.1.2 Electron transfer in solid MgO

While CDFT is an established method for calculating electron transfer (ET) param-

eters in molecular systems [34, 80–83], applications to condensed phase/periodic

systems remain rare to date. A notable example however is the electron tunnelling

between between charged oxygen vacancies (termed F-centre defects) in MgO, pre-

viously calculated with a plane-wave implementation of CDFT in CPMD [34, 82].

Oxygen vacancies have been shown to exist in MgO in three possible charge states:

F0, F+ and F2+, corresponding to the localisation of two, one or zero electrons at

the defect site [82]. The electron tunnelling process between defect sites i and ii is

therefore written as
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F0
i +F+

ii → F+
i +F0

ii . (5.6)

The ET process is modelled by removing two oxygen atoms at a separation

d from a MgO rocksalt structure, while removing only one electron. With a total

charge of +1 and a multiplicity of 2, a charge difference of Nc=1e defined between

the defect sites is used to form the diabatic states. The Hirshfeld weight function is

defined as the 6 Mg atoms nearest to the respective defect site. The reorganisation

energy for this reaction is defined as

λ = EA(RB)−EA(RA), (5.7)

where RA and RB are the optimised geometries in the diabatic states A and B. As

the initial and final states are the same, the reorganisation energy can be calculated

as the vertical energy gap at the minimum of a diabatic state,

λ = ∆E(RA) = EB(RA)−EA(RA). (5.8)

CDFT geometry optimisations of the diabatic states are performed using the

PBE functional [46], with single point calculations of the reorganisation energy also

performed using the PBE0-TC-LRC functional [46, 58, 91, 156]. The chosen cutoff

radius Rc of 7 Å has been shown in previous work to reproduce the experimental

MgO band gap of 7.2 eV [34, 157]. For Mg the 2s, 2p and 3s electrons and for O the

2s and 2p electrons are treated explicitly. Due to the very hard pseudopotential of

Mg, a real-space integration grid cutoff of 3000 Ry is used.

Fig. 5.2 shows an isosurface of excess spin density for the DFT adiabatic

ground state, showing delocalisation of the excess charge over both defect sites, and

the CDFT diabatic state calculated for the same geometry with a charge difference

of Nc=1e defined between the defect sites. The results of geometry optimising

the diabatic state and calculating the vertical energy gap λ are shown in Fig. 5.3.

The corresponding reorganisation energies (dashed lines) are very similar (mean

residual unsigned error of 4%) to the ones obtained from CP2K CDFT single point
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% HFX n Cell λ BW (eV) λ HW (eV) λopt HW (eV) λ [34] (eV)
0 3 211-240-3 0.94 0.89 0.93 0.76

4 110-096-4 0.84 0.76 0.78 0.64
4 110-240-4 1.07 0.96 1.01 0.79
6 111-216-6 1.27 1.18 1.19 0.98
9 110-144-9 1.25 1.13 1.14 0.92
18 100-192-18 1.44 1.35 1.26 1.12
24 111-288-24 1.37 1.34 1.32 1.11

25 3 1.07 1.00 1.06 0.86
4 1.01 0.91 1.06 0.78
4 1.34 1.19 1.29 0.98
6 1.69 1.56 1.63 1.33
9 1.69 1.52 1.59 1.26
18 1.97 1.89 1.85 1.66
24 1.87 1.85 1.87 1.63

Table 5.3: Comparison of reorganisation energies obtained from CDFT calculations in CP2K
with Becke weighting (BW), Hirshfeld weighting (HW) and reference values from
CPMD. Results are shown for different percentages of Hartree-Fock exchange
and for different defect separations n.

calculations on CPMD CDFT geometries (solid lines) giving reassurance to the

present CDFT force implementation. Though the reorganisation energies obtained

from CP2K CDFT tend to be somewhat larger than they were reported for CPMD

CDFT (mean residual unsigned error of 22%), even if the are calculated on the same

geometries. This difference is most likely related to the different functional form of

the weight function w (Eq. 2.19) in the two implementations, Gaussian functions in

CP2K and Slater functions in CPMD [34, 82]. Other differences such as the basis

set, use of ADMM and slight variations in the PBE0-TC-LRC functional used for

electronic structure calculations could also contribute to the difference.

I note that while the reorganisation energies are similar for both Becke and

Hirshfeld CDFT in CP2K, upon geometry re-optimisation they differ significantly.

For the 110-096-4 cell the CPMD PBE0 reorganisation energy is 0.78, increasing to

1.06 eV (+0.28 eV) with CP2K geometry re-optimisation with Hirshfeld partitioning

and increasing further to 1.64 eV (+0.87 eV) with Becke partitioning.

In addition to reorganisation energies, I can also compare with the CPMD

electronic couplings. The electronic coupling matrix elements between the initial
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Figure 5.3: (A) Reorganisation energies λ and (B) electronic couplings 1
2 Hpbc

ab obtained for
tunnelling between oxygen defects in MgO. The black markers represent the
CPMD reference values [34], red markers the CP2K values calculated using
the CPMD structures and pink markers the CP2K values from re-optimised
structures. Results are shown for different percentages of Hartree-Fock exchange
and for different defect separations. Circles represent PBE calculations, while
squares represent PBE0-TC-LRC calculations. Best fits are indicated by solid
and dashed lines.
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and final ET states are calculated with CDFT [52] on the transition state structures,

approximated by the DFT adiabatic ground state where the electron hole is delo-

calised over both defects. The supercell size and defect separation were chosen such

that in one direction the distance between the defects is equal to the distance to the

periodic image of the defects, while the other directions are sufficiently large that

periodic images in these directions have only a small effect [34, 82]. The finite size

corrected electronic coupling Hab is therefore equal to half of the coupling obtained

in periodic boundary conditions Hpbc
ab minus a correction term that accounts for the

artificial contribution from the remaining periodic images,

Hab(ra,rb) =
1
2

Hpbc
ab (ra,rb)− 1

2

n

∑
i, j,k∈[−1,0,1]

Hab(ra,rb
i, j,k), (5.9)

where in this work the latter correction term is neglected to enable a direct comparison

to the CPMD electronic couplings.

Fig. 5.3 compares the electronic couplings calculated with CPMD and CP2K

on the CPMD optimised geometries as a function of defect distance, with good

agreement for defect distances of up to 10 Å (MRUE = 26%). At larger distances

both the PBE and PBE0-TC-LRC CP2K couplings are somewhat larger than reported

for CPMD, resulting in a smaller exponential decay value for PBE0-TC-LRC of β =

0.47 ± 0.06 Å−1, compared to the one reported for CPMD couplings, 0.73 ± 0.10

Å−1 [34, 82]. The overall MRUE error is reasonably small, 58%. For PBE I find a

smaller exponential decay value of β = 0.28 ± 0.10 consistent with CPMD β = 0.40

± 0.22.

5.2.2 CDFT molecular dynamics

5.2.2.1 H+
2 in vacuum

An important consideration in any molecular dynamics calculation is total energy

conservation. For CDFT-MD this can be particularly challenging as the constraint

is introduced through an additional self-consistent field (SCF) loop, and as such

both the DFT and CDFT SCF loops must be well converged in order to ensure total

energy conservation. The justification for this is that without a well converged SCF
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Figure 5.4: (A) Total energy conservation in DFT-MD for the hydrogen dimer H+
2 as a

function of the wavefunction convergence. (B) Total energy conservation in
CDFT-MD as a function of the constraint convergence, where the grey and
black markers represent H+

2 CDFT-MD calculations in vacuum performed with
and without periodic boundary conditions. Cross markers represent Ru2+-
Ru3+ CDFT-MD calculations in aqueous solution with BLYP (red), B3LYP
(green) and ωB97X (blue). Cyan triangle marker represents lepidocrocite
CDFT-MD with an electron hole, orange circle marker represents MgO CDFT-
MD calculations with a defect separation of 6 Å and yellow diamond marker
represents BiVO4 CDFT-MD with an excess electron.

loop, different energies and forces could be obtained breaking time reversibility.

The use of wavefunction extrapolation for the DFT loop and Lagrange multiplier

extrapolation for the CDFT loop further exacerbate this problem [158, 159].

The hydrogen dimer H+
2 presents one of the simplest benchmarks for examining

energy convergence, performed in vacuum for a temperature of 300 K in the NVE

ensemble with the PBE functional. Fig. 5.4 shows the average drift of the conserved

energy for both DFT-MD as a function of the SCF convergence criterion, and CDFT-

MD as a function of the constraint convergence. The constraint is defined as a charge

difference of Nc=0.5e between the two hydrogen atoms. The resultant energy drift is

less than 1×10−6 H/atom/ps for a constraint convergence of 1×10−6e, the same

as found in CPMD calculations for this system [33]. For unconstrained DFT-MD

of H+
2 the energy drift is negligible for the chosen DFT convergence of 1×10−5,

less than 1×10−8 H/atom/ps, and therefore the observed energy drift is introduced

through the use of CDFT.

On average, the CDFT-MD calculations presented in this work are a factor of

3 times more expensive than corresponding DFT-MD calculations, consistent with
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Figure 5.5: Drift of the conserved energy per atom as a function of time for CDFT-MD
simulations for (A) a hydrogen dimer H+

2 and (B) solid MgO with a defect
separation of 6 Å with the PBE functional.

other CDFT implementations [33]. This additional cost is introduced by the CDFT

SCF loop, with around 2-3 additional SCF cycles per MD step.

5.2.2.2 Excess electrons and holes in oxide materials

Also included in Fig. 5.4 is the energy drift for CDFT-MD of MgO with a defect

separation of 6 Å, constraining the charge difference over the defects sites as de-

scribed in Section 5.2.1.2. Likely as a result of the well defined oxygen defects with

large reorganisation energies, even for a loose constraint convergence of 1×10−3e

total energy conservation below 1×10−6 H/atom/ps is achieved for both PBE and

PBE0-TC-LRC CDFT-MD. Fig. 5.5 shows the drift of the conserved energy as

a function of time for different values of the constraint convergence for both the

hydrogen dimer H+
2 and MgO CDFT-MD with the PBE functional.

Energy drifts for CDFT-MD calculations for three further systems are shown

in Fig. 5.6: an excess electron in bismuth vanadate (BiVO4) [160], an electron hole

in lepidocrocite (γ−FeOOH) [103] and an electron hole in hematite (α−Fe2O3)

[103, 104]. The HSE06 functional is used for all systems, with the percentage

of Hartree-Fock exchange (HFX) optimised for each material: 25% for bismuth

vanadate, 18% for lepidocrocite and 12% for hematite (see Chapter 3). The bismuth

vanadate calculations are for a 1x2x1 supercell, the lepidocrocite calculations are for

a 3x1x3 supercell and the hematite calculations are for a 2x2x1 supercell.

For each system, the electron or electron hole polaron is localised on a single
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Figure 5.6: Drift of the conserved energy per atom as well as the Lagrange multiplier for
CDFT-MD calculations performed for: solid MgO with a defect separation of 6
Å with the PBE functional, a hole polaron in lepidocrocite with HSE06(18%),
an electron polaron in bismuth vanadate BiVO4 with HSE06(25%) and a hole
polaron in hematite with HSE06(12%). Importantly, the use of CDFT-MD
introduces negligible additional energy drift.

atom as indicated by a large change in spin moment from Hirshfeld analysis. As

such, I use a spin constraint to constrain the spin moment of the atom where the

polaron localises to the spin moment of the geometry optimised charged ground

state: 0.91 for the vanadium atom in bismuth vanadate, -3.59 for the iron atom in

lepidocrocite and -3.29 for the iron atom in hematite. Figure 5.6 compares the drift

of the conserved energy as well as the value of the Lagrange multiplier as a function

of time for these systems.
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Figure 5.7: CDFT-MD of Ru2+-Ru3+ in aqueous solution. An isosurface of the weight
function (Eq. 2.19) is shown, where the electron donating group Ru2+(H2O)6
is shown color coded yellow and the electron accepting group Ru3+(H2O)6 is
shown color coded blue. The bonds between the two Ru ions and the 6 water
molecules in their first solvation shell are shown explicitly.

5.2.2.3 Ru2+-Ru3+ in aqueous solution

For an example of condensed phase CDFT MD, I choose the previously studied

Ru2+-Ru3+ electron self-exchange in aqueous solution [33]. This is arguably one of

the simplest electron self-exchange reactions in aqueous solution. Both Ru ions are

low-spin and coordinated by 6 water molecules in an octahedral geometry. The most

significant difference between aqueous Ru2+ and Ru3+ are the Ru-O bond lengths,

around 0.08 Å shorter in the oxidised state [161].

Starting from the same initial structure from classical MD as the reference

CPMD calculations [33], with two Ru ions and 63 water molecules, 1 ps of DFT-MD

equilibration is performed with a timestep of 0.96 fs in the NVT ensemble with

a Nose-Hoover thermostat at 300 K, and a fixed Ru-Ru distance of 5.5 Å. Where

possible I use the same computational setup as the calculations in CPMD [33, 162,

163], including use of the BLYP functional [164,165]. A charge difference constraint

of Nc=1e is defined between the electron donating and accepting groups, chosen as
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the Ru ion and the 6 water molecules in the first solvation shell: Ru2+(H2O)6 for

the electron donating group and Ru3+(H2O)6 for the electron accepting group. The

constraint is converged until the residual error is less than 5×10−4e. An isosurface

of the weight function (Eq. 2.19) is shown in Fig. 5.7.

The total linear drift of the conserved energy is shown in Fig. 5.4, for both

DFT-MD and CDFT-MD. The use of CDFT introduces minimal additional energy

drift, with only a small increase from 4.0×10−5 H/atom/ps to 4.5×10−5 H/atom/ps.

While this energy drift is reasonably large, it is smaller than that found in CPMD

calculations of 9.7×10−5 H/atom/ps [33].

Following 1 ps of CDFT-MD equilibration, I find that the average absolute

charge for the electron donating group Ru2+(H2O)6 is 0.47e and the electron ac-

cepting group Ru3+(H2O)6 is 1.47e. Only the charge difference between the two

groups is constrained to 1, and as such the absolute charges are free to vary during

the dynamics. These average charges are similar to those found from CPMD calcula-

tions, 0.52e and 1.52e [33]. The remaining charge of 3.06e (2.96e from CPMD) is

delocalised over the solvent.

While the average charges of the electron donating and accepting groups are

similar between the CP2K and CPMD calculations, the geometries are different.

For CP2K CDFT-MD the Ru-O bond lengths are on average 0.086 Å shorter in the

oxidised state Ru3+(H2O)6 than Ru2+(H2O)6, in comparison to only 0.02 Å shorter

for CPMD CDFT-MD [33]. X-ray diffraction experiments performed on isolated

ions in solution found that the average Ru-O bond lengths were 0.08 Å shorter in

the oxidised state [161], consistent with unconstrained calculations performed in

CPMD [162, 163]. However, without any experimental data available for an ion-

ion distance of 5.5 Å it is not possible to determine which of the CPMD or CP2K

CDFT-MD geometries are more accurate.

The CDFT simulation can be used to calculate the reorganisation free energy

for electron transfer between the two Ru ions. For self-exchange and assuming linear

response, it is simply equal to the thermal average of the vertical energy gap,
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Figure 5.8: Vertical energy gap for the electron self exchange reaction of Ru2+-Ru3+ in
aqueous solution. Single point calculations are performed on 100 equally spaced
structures sampled from 1ps of CDFT-MD. The green dotted line shows the
BLYP average of 1.30 ± 0.03 eV, the blue line the ωB97X average of 1.48 ±
0.08 and the red dotted line the CPMD value from Oberhofer et al. of 1.53 ±
0.06 eV [33].

λ = ⟨∆E⟩A, (5.10)

where ∆E = EB −EA and the average is taken along a CDFT trajectory in diabatic

state A. The vertical energy gap is sampled with 100 equally spaced single point

calculations, shown in Fig. 5.8, with an average ⟨∆E⟩A=1.30 ± 0.03 eV, slightly

smaller than the CPMD calculated value of 1.53 ± 0.06 eV [33]. The error of the

average due to the finite length of the trajectory is calculated from the difference of

the vertical energy gap obtained from the first and second half of the trajectory.

With the increasing efficiency of computer codes and platforms it is now possi-

ble to perform hybrid CDFT calculations on system sizes that would have been out of

reach of the earlier CPMD work [33]. In particular, I am able to perform CDFT-MD
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Functional Average Ru-O / Å Energy gap / eV
BLYP 2.18, 2.10 1.30 ± 0.03
B3LYP 2.18, 2.08 1.42 ± 0.18
ωB97X 2.17, 2.07 1.48 ± 0.08
BLYP [33] 2.15, 2.13 1.53 ± 0.06

Table 5.4: Average Ru-O bond lengths and vertical energy gap (Eq. 5.10) for the electron
self exchange reaction of Ru2+-Ru3+ in aqueous solution. The average of the six
Ru2+-O and Ru3+-O bond lengths are calculated following 1ps of CDFT-MD
equilibration. The error of the vertical energy gap (Eq. 5.10) is calculated from
the difference of the vertical energy gap obtained from the first and second half
of the trajectory.

with B3LYP [166] and the long-range corrected hybrid functional ωB97X [167].

Following CDFT-MD equilibration I find only a small increase in the average ab-

solute charges of the Ru3+(H2O)6 and Ru2+(H2O)6 compared to charges obtained

from BLYP CDFT-MD: +0.08e for B3LYP and +0.13e for ωB97X. The remaining

charge of 2.92e and 2.82e remains delocalised over the solvent. Therefore, even

these hybrid functionals are unable to prevent spurious charge delocalisation across

the solvent. Table 5.4 shows the average Ru-O bond lengths and vertical energy

gap for BLYP, B3LYP and ωB97X. Similar to the charge, the reorganisation energy

increases only slightly: +0.12 eV for B3LYP, and +0.18 eV for ωB97X.

The reorganisation energy calculated for the electron self-exchange reaction ac-

counts for the two Ru-hexahydrates and the 51 water molecules solvating the electron

transfer complex, neglecting the effects of higher solvation shells and the bulk solvent.

Blumberger et al. [168] calculated a finite size correction from classical MD with

extrapolation to the limit of infinite dilution, resulting in a correction term of 0.09

eV [33]. As such, the reorganisation free energy of the infinitely diluted system for

the BLYP, B3LYP and ωB97X functionals is: 1.30+0.09=1.39 eV, 1.42+0.09=1.51

eV and 1.48+0.09=1.57 eV. Comparison to experiment is challenging as a direct

experimental measurement of the reorganisation free energy is not available, and

the experimental Ru-O bond lengths for the electron transfer complex at a distance

of 5.5 Å are not known. A continuum study [169] with a Ru-Ru distance of 6.5 Å

reported a reorganisation free energy of 1.95 eV, which fits well the experimental

rate constant [170], and is expected to decrease to 1.75 eV for a Ru-Ru distance of
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Figure 5.9: Hole transfer in two organic semiconductors: (A, B) a 3x2x1 supercell of
pentacene and (C, D) a 3x3 supercell of a pyrene 2D covalent organic framework
(pyrene-COF). The left column (A, C) shows the CDFT weight function (Eq.
2.19), while the right column shows the spin density (B) and excess electron
density (D) following a 4 steps of CDFT geometry optimisation. In an attempt
to stabilise the excess hole, the pentacene molecule moves closer to its highest
coupling neighbour while the pyrene-COF forms cyclic structures between the
acetylene linkers.

5.5 Å [33]. In addition, under a number of assumptions, an experimental value of

2.0 eV has been reported [170].

5.2.3 Charge transfer in organic crystals

A useful application of CDFT in organic semiconductor research would be to calcu-

late reorganisation energies for charge transfer in organic semiconductors, including

the full outer-sphere contribution from the periodic crystal which is usually pre-

sumed to be small and therefore neglected. However, it would be useful to check

this assumption from case to case. Refined values for reorganisation free energy
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would improve the accuracy of the parametrisation of charge transport simulations

including e.g. charge hopping and non-adiabatic molecular dynamics [115,171,172].

Fig 5.9 shows the weight functions for hole transfer in two organic semiconduc-

tors: a 3x3 supercell of a pyrene 2D covalent organic framework (pyrene-COF) [173],

and a 3x2x1 supercell of pentacene [174]. For both systems, the electron donating

and accepting regions are defined as adjacent units or molecules. The reorganisation

energy for hole transfer in these systems should be calculated using Eq. 5.8, as the

vertical energy gap at the minimum of a diabatic state. Geometry optimising the

diabatic state with PBE or HSE06 for either system results in unphysical distortions

and even bond breaking during CDFT geometry optimisation of the donor and accep-

tor groups. This shows that the localisation of a full charge on a single COF unit or

pentacene molecule within a crystalline environment does not correspond to a stable

local minimum on the potential energy surface. Thus I conclude that fully localised

polarons do not exist in these materials and cannot be enforced using CDFT. In this

respect I note that previous non-adiabatic molecular dynamics simulations showed

that polarons in crystalline pentacene are delocalized over 18 molecules on average

at room temperature [172]. At 0 K, corresponding to the present CDFT optimisa-

tions, the charge will occupy the fully delocalized state at the top of the valence

band. The physical reason for the non-existence of fully localised polaronic states

is that reorganisation energy is not sufficiently large in these materials compared to

electronic couplings to support fully localised states, in stark contrast to, e.g. the F

centres in MgO system (Section 5.2.1.2) and the Ru2+-Ru3+ self-exchange reaction

(Section 5.2.2.3).

5.2.4 Reliability of CDFT

CDFT is a powerful method for calculation of ET parameters, but as shown in

Section 5.2.3, not any arbitrary charge constrained state can be constructed this

way. To examine this further, I performed a experiment where I deliberately applied

an unphysical constraint to the Ru2+-Ru3+ in aqueous solution (Section 5.2.2.3).

Removing the 5.5 Å Ru-Ru distance constraint and switching to the NVE ensemble,

I set charge constraint of 0e for the electron donating group Ru2+(H2O)6 resulting
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in an average Ru2+ charge of +0.36e and an average (H2O)6 charge of -0.36e. It

is clear that such a constraint is far from the adiabatic ground state, reaching an

energy drift of 2×10−4 H/atom after 300 fs. The constraint is fulfilled and the forces

on the atoms are continuous in time, and decreasing the timestep by an order of

magnitude does not reduce this energy drift. This is attributed to the use of CDFT

to form an electronic state that the underlying functional is not able to adequately

describe, despite the well behaved convergence of both the DFT and CDFT SCF

loops. As for the CDFT geometry optimisation of organic molecules in Section 5.2.3,

this highlights that not any arbitrary charge constrained state can be obtained using

CDFT.

A useful diagnostic tool to identify states that the DFT functional is not able to

adequately describe is the integrated absolute spin density (IASD),

∫
Ω

(ρα(r)−ρβ (r))dr, (5.11)

where ρα(r) and ρβ (r) are the electron densities of the alpha and beta spin channels.

For a system with a single excess charge, the IASD should have a value of 1. Small

deviations are to be expected, for example the CDFT geometry optimisations of MgO

in Section 5.2.1.2 have an average IASD of 1.05, and the CDFT-MD of Ru2+-Ru3+

in Section 5.2.2.3 have an average IASD of 1.09.

While neutral DFT calculations for the pyrene-COF and pentacene crystal in

Section 5.2.3 have an IASD of 0.00 as expected, with the addition of an electron hole

this increases to 1.18 for the pyrene-COF and 1.33 for the pentacene crystal. Using

CDFT to localise the electron hole fully on a single unit or molecule raises the IASD

to 1.46 (+0.28) and 1.55 (+0.22), with further increases during CDFT geometry

optimisation. These large values of IASD indicate the breaking of electron pairs,

as the DFT functional is not able to adequately describe the charged states. This is

particularly problematic for CDFT, where the transfer of fractions of electrons from

donor to acceptor can lead to electronic couplings that do not decay exponentially

with distance [175]. In the context of this work, I attribute symmetry breaking and

the transfer of fractional electrons to the formation of an unphysical diabatic state
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that the DFT functional is not able to adequately describe.

I note that the IASD does not distinguish between the transfer of fractional

electrons within the same unit and between the donor and acceptor, the latter which is

particularly problematic for CDFT. Mavros and Van Voorhis have recently proposed

an alternative metric [175] which directly uses the difference between the electron

donor and acceptor densities, and therefore more specifically targets the transfer of

fractional electrons between the donor and acceptor. However, similar to the IASD

their metric has no clear cutoff, and has been shown to provide both false positives

and false negatives in identifying the whether calculated electronic couplings will

decay exponentially with distance. As such I believe that more research is needed to

better understand the problem of fractional electrons within the context of CDFT, and

the effect this may have on the reliability of calculated electron transfer parameters.

5.3 Conclusion

In this Chapter I have provided an extension to CDFT in a popular DFT package

CP2K, implementing the necessary force terms which arise from a constraint based

on Hirshfeld partitioning of the electron density. The previously used Becke par-

titioning is prone to predict qualitatively incorrect atomic charges, as a result of

dividing space equally among all atoms.

I have verified and benchmarked this new implementation against systems previ-

ously studied in a plane-wave implementation of CDFT, showing good agreement for

both geometry optimisation and molecular dynamics for: electron tunnelling between

oxygen defects in MgO [34], and electron self-exchange in aqueous Ru2+-Ru3+ [33].

With the increasing efficiency of computer codes and platforms it is now possible

to perform hybrid CDFT calculations on system sizes that would have been out of

reach of the earlier CPMD work [33]. In particular, I am able to perform CDFT-MD

for electron transfer reactions in the condensed phase where both solute and solvent

are treated at the hybrid or long-range corrected hybrid DFT level.

Consistent with previous work [175], I find that an IASD markedly larger

than 1 is an indicator of systems for which CDFT calculations can be unreliable.
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With the exception of these pathological cases, I find that CDFT is a powerful tool

for the calculation of electron transfer parameters at a reasonable computational

cost. I expect the method to become valuable also for the simulation of electron

transfer reactions across interfaces between different semiconductors or between

semiconductors (e.g. oxides) and liquid solutions (e.g. water), thus becoming part of

the toolbox for first principles electrochemistry [147].



Chapter 6

Polaron structure at the

hematite/liquid water interface

The calculations of charge transport in bulk hematite in Chapters 3-4 set the scene

for similar calculations at the hematite/liquid water interface. In particular, it will be

important to understand if and how the presence of water at the interface changes the

picture obtained for the bulk material. Such investigations could help refine models,

and resolve ongoing questions, about rate-limiting transport processes governing

photocatalytic water splitting efficiency at hematite/water interfaces [11, 146].

In this Chapter I first discuss the computational setup of the hematite/liquid

water calculations in Section 6.1, before discussing the results for both the hole

polaron in Section 6.2.1 and for the electron polaron in Section 6.2.2. This work

is currently unpublished, and there is still much to understand about the charge

transport mechanisms and how these differ to bulk hematite. However, I will discuss

the early results of this work as well as some of the challenges in regards to trivial

crossings (Section 6.3) during the molecular dynamics simulation and the problem

of charge delocalisation across the solvent (Section 6.4). These calculations build

upon the work of Dr Guido Falk von Rudorff who carried out DFT-MD calculations

of the neutral interface, and Dr Philipp Schienbein who subsequently trained a neural

network potential for the neutral interface. I note that while Dr Philipp Schienbein

was responsible for running the calculations in Section 6.2, I led the investigation

and performed all analysis.
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Figure 6.1: Neutral spin density for the hematite/water interface. Oxygen terminated
hematite c-cut (001) in contact with 30 Å liquid water, prepared by Dr Guido
Falk von Rudorff. The Fe-bilayers are color coded according to their spin and
labelled A-F, where the interfacial ‘F’ bilayer is composed of two rows: ‘Fb’
which is closer to the bulk-like hematite, and ‘Fi’ which is closer to the interface.

6.1 Computational setup

The calculations of polaron structures and charge transport at the hematite/liquid

water interface in this Chapter builds directly upon the previous work by Dr Guido

Falk von Rudorff [30, 97, 99, 100], who carried out extensive DFT-MD calculations

of the neutral interface. As such, please refer to his work for a full description

of the interface and corresponding computational setup which I will only briefly

summarise.

Figure 6.1 shows the neutral spin density for the system prepared by Dr Guido

Falk von Rudorff, composed of a 2 x 2 x 1 hematite slab in contact with 30 Å

liquid water. A mutli-stage system preparation scheme combining both classical

MD and DFT-MD with HSE06(12%) was used to set up the system [97]. The

oxygen terminated hematite c-cut (001) was chosen as the structure of this surface is

known experimentally [176–178]. The 2 x 2 x 1 supercell was determined to be an

appropriate compromise between accuracy and computational cost, and as shown

in Chapter 3 there is little difference in polaron structure between the 2 x 2 x 1 and

larger supercells.

With a total of six Fe-bilayers, the 2 x 2 x 1 hematite slab has three parallel

Fe-bilayers where the electron or hole polaron may localise. These are labelled in

Figure 6.1 as the ‘B’ layer (1 layer away from the surface), the ‘D’ layer (bulk-like)

and the ‘F’ layer (at the surface).

I note that while the computational setup in this work and the work of Rudorff
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and co-workers is largely consistent, there is a slight increase in the convergence

criteria in order to ensure consistent convergence for the charged systems. The

wavefunction gradient was increased from 1×10−5 to 1×10−6 H, and the planewave

cutoff was increased from 400 to 600 Ry (as discussed in Chapter 3.1). These

changes make very little difference to the neutral simulations, while are essential for

the systematic convergence of the charged simulations. In addition, for molecular

dynamics the ensemble was changed from NPT to NVT, avoiding any complications

of a flexible cell during the MD. A final difference, that does not effect the dynamics,

is the implementation of Hirshfeld charge partitioning. Rudorff and co-workers

used an implementation of Hirshfeld partitioning where the weight function was

constructed using covalent radii, rather than the promolecular density, and therefore

my calculated charges and spin moments are different.

In order to better understand polaron formation and any dependence on the

starting geometry, working together with Dr Philipp Schienbein we have performed

10 statistically independent DFT-MD simulations starting from completely different

nuclear configurations. These configurations were drawn from one long simulation

of the neutral hematite/liquid water interface performed using a machine learning

(ML) model by Dr Philipp Schienbein [179]. This ML model is based on the recently

introduced committee neural network potentials (c-NNP) [180], and is likely the first

such application to a transition metal oxide/liquid water interface. The advantage of

a ML model is that it is is able to significantly speed up the simulations by several

orders of magnitudes, while keeping the same accuracy. This ensures that the starting

nuclear geometries are very different, and represent a statistical ensemble.

I note that as an alternative to expensive DFT-MD I have considered geometry

optimisation of the hematite slab, with frozen water molecules. While I found

spontaneous polaron formation, I also found that these structures were iso-enegetic

with delocalised polarons (∆E < 5 meV). This highlights the importance of the

effect of the solvent, and therefore I do not consider geometry optimisation of the

hematite/liquid water interface further in this work.

Given that the electron hole is generally of greater interest due to the use of
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hematite as a photoanode material, and the higher computational cost for calculations

of the excess electron, in this Chapter the primary focus will be DFT-MD of the

electron hole at the hematite/liquid water interface.

6.2 Results

6.2.1 Hole polaron

While in bulk hematite the two distinct planes of iron atoms that comprise an Fe-

bilayer are equivalent, at the hematite/liquid water interface they are not due to the

asymmetry of the interface. One row of the bilayer (‘Fi’) is closer the water interface,

while the other (‘Fb’) is closer to the bulk-like hematite. As a result, the geometry

of the hole polaron will differ depending on which row of the bilayer localisation

occurs.

Figure 6.2 shows the spin moment of all Fe atoms of the three Fe-bilayers where

the hole polaron may localise, for 10 statistically independent DFT-MD simulations.

For each trajectory, the hole relaxes from a delocalized band state to a polaron

localised on a single iron atom. In 8/10 of the trajectories the hole polaron localises

onto the ‘F’ bilayer, with the remaining two trajectories on the ‘B’ layer. This

represents the high probability of the hole polaron to localise at the interface, where

the reorganisation energy is expected to be larger than bulk. As previously explored

in Chapters 3-4, charge transport in hematite occurs within the same spin Fe-bilayers

and therefore a polaron that localises onto the ‘B’ layer will become trapped, even if

there is a lower energy state at the ‘F’ layer. The transport between different spin

layers observed in Figure 6.2 is attributed to trivial crossings, a consequence of not

propagating continuously the electronic state. See Chapter 6.3 for further discussion.

As an example, in trajectory 8 the hole polaron localises within 70 fs at the

interface with an average spin moment of -3.35, very similar to the spin moment

found for bulk hematite of -3.29 (shown as the dotted line in Figure 6.2). The

decreased polaron spin moment at the interface is attributed to the interaction with

the water, where polarisation results in an increase in both the charge and spin

moment of the interfacial iron atoms even for the neutral state. As a result, the
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Figure 6.2: Hole polaron spin moment at the hematite/water interface. Spin moments of
all iron atoms where the hole polaron may localise, shown for 10 statistically
independent DFT-MD trajectories starting from completely different nuclear
configurations. Red line refers to the ‘B’ Fe-bilayer, green line to the ‘D’ Fe-
bilayer, light blue to the ‘Fb’ row of the F-bilayer and dark blue to the ‘Fi’ row of
the F-bilayer. Dashed line shows the spin moment of the hole polaron from DFT
geometry optimisation of bulk hematite. Refer to Figure 6.1 for layer labelling.
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Figure 6.3: Hole polaron structure at the hematite/water interface. Average of the 6 first
nearest neighbour Fe-O bonds for all iron atoms where the hole polaron may
localise, shown for 10 statistically independent DFT-MD trajectories starting
from completely different nuclear configurations. Red line refers to the ‘B’
Fe-bilayer, green line to the ‘D’ Fe-bilayer, light blue to the ‘Fb’ row of the
F-bilayer and dark blue to the ‘Fi’ row of the F-bilayer. Refer to Figure 6.1 for
layer labelling.
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average spin moment of -3.97 for the bulk-like ‘D’ Fe-bilayer is decreased to -4.05

for the ‘Fb’ row and -4.09 for the ‘Fi’ row. Therefore, the change in spin moment

upon localisation of the hole polaron of +0.74 is actually larger than that found for

bulk hematite of +0.64. Nuclear relaxation of the polaron structure (Figure 6.3)

continues until around 250 fs, resulting in an average Fe-O bond length of 1.95 Å.

The change in bond lengths per Fe-O bond, accounting for the different bond lengths

of the two Fe-bilayer rows, is -0.08 Å compared to -0.06 Å in the bulk hematite

2x2x1 supercell. As would be expected due to the increased reorganisation energy at

the interface, both the change in spin moment and change in bond lengths are larger

than for bulk hematite. For the remainder of the 2ps DFT-MD, the hole polaron

remains localised on this iron atom.

A surprising feature in Figure 6.3 is that some hole polarons appear to be

localised with only a very small change in geometry. Figure 6.4 explores this in

further detail, showing examples of the polaron structure at the ‘Fi’ row and ‘Fb’ row

of the Fe-bilayer. While the electronic structure is similar, the Fe-O bond lengths

differ considerably. The polaron at the ‘Fi’ row has an average Fe-O bond length of

1.95 Å, while the polaron at the ‘Fb’ row has an average Fe-O bond length of 2.06

Å. Further, the tetragonal elongation found in bulk calculations of the hole polaron

is far more pronounced for the ‘Fi’ row than the ‘Fb’ row, where only one of the

Fe-O-H bond lengths decreases. This is likely due to the interaction of the hole

polaron with the water, where the row of the bilayer closer to the water experiences

a greater degree of polarisation and therefore stabilisation of excess charge.

Figure 6.5 shows an example of hole polaron hopping at the hematite/liquid wa-

ter interface, with comparison to DFT-MD of bulk hematite. A significant difference

compared to bulk hematite is that at the interface the initial and final states are not

the same, and as such the spin moments are asymmetric in time. In addition, the

time taken for hole polaron hopping at the interface is larger. The distance between

the maxima in the spin moment for bulk hematite is around 40 fs, while for the

hematite/liquid water interface the first spin moment maxima of -3.50 is at 50 fs

and the equilibrated maxima of -3.28 occurs at 150 fs. This is likely due to the
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rearrangement of the water molecules at the interface, which acts to stabilise the

excess charge. These time periods are consistent with an Fe-O stretch (around 50

fs) [38], and multiple O-H stretches (around 10 fs) [181]. As there are only a total of

5 hops during the 20 ps of DFT-MD, more statistics will be required to investigate

this effect further. In addition, it is unlikely that the 2 ps DFT-MD performed is

sufficient to equilibrate the polaron fully at the interface.

While the hole polaron appears to localise with equal probability onto the ‘Fi’

and ‘Fb’ rows, nearly all hopping of the hole polaron in Figures 6.2-6.3 is from the

‘Fb’to ‘Fi’ row. The only exception is a hopping in trajectory 10 from an ‘Fb’ Fe

atom to another ‘Fb’ Fe atom at around 800 fs, which is the rare event of a second

nearest neighbour hop and is likely a result of the non-equilibrium hole polaron. As

no hops are observed from ‘Fi’ to ‘Fb’ this suggests that the hole polaron localised

closer to the interface is more stable, consistent with the larger change in Fe-O bond

lengths and therefore a larger reorganisation energy. With only 5 successful hops

during 20 ps DFT-MD, more statistics is required to investigate this further. In future

work it would be interesting to compare the hopping rates between the two rows of

the Fe-bilayer, and to relate this to the orientation of the hydrogen atoms and the

dipole of the solvent.
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Figure 6.4: Hole excess spin density at the hematite/liquid water interface. The ‘Fb’ hole
polaron corresponds to the final geometry of trajectory 7, with an average
Fe-O bond length of 2.06 Å, while the ‘Fi’ hole polaron corresponds to the
final geometry of trajectory 9, with an average Fe-O bond length of 1.95 Å.
For comparison, the average Fe-O bond lengths for iron atoms where the hole
polaron does not localise are 2.08 Å for both the ‘Fb’ and ‘Fi’ row. Both hole
polarons have been localised on their respective iron atoms for 2 ps of DFT-
MD, and therefore should be close to equilibrium. Bond lengths between the
iron atom and bonded oxygen atoms are shown in Angstrom. Arrows show
contraction and elongation of the Fe-O bonds with respect to their neutral bond
lengths.
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Figure 6.5: Hole polaron hopping during DFT-MD of the hematite/liquid water interface
for trajectory 4 (top left) and bulk hematite (top right). Spin moments of all 8
atoms of the Fe-bilayer shown color coded, with the average spin moment of
the two iron atoms where the hole polaron localises shown with a black dotted
line. Notably, in bulk hematite the initial and final states are the same due to
symmetry, which is broken at the hematite/liquid water interface.
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6.2.2 Electron polaron

Figure 6.6 show a plot of the spin moment for all relevant iron atoms against time,

demonstrating the weaker localisation of the 2-site delocalised electron polaron in

comparison to the 1-site localised hole polaron. Similar to the hole polaron, for 8/10

trajectories there is localisation at the interfacial ‘F’ layer and the remaining 2/10

trajectories at at the ‘B’ layer.

The electron polaron delocalises across the two rows of an Fe-bilayer, and

therefore the geometric complications found for the hole polaron structure do not

apply to the electron polaron. Figure 6.7 shows the excess spin density of an electron

polaron, very similar to that found in calculations of bulk hematite. The spin moment

of the two iron atoms where the electron polaron is delocalised are -3.84 for the ‘Fb’

row and -3.89 for the ‘Fi’, corresponding to an increase in spin moment of +0.25 and

+0.20, similar to that found for bulk hematite of +0.23.

The hopping of the electron polaron observed during the 2ps DFT-MD is for

the shortest transfer distance only (e.g. (0,1)-(0,2) as described in Chapter 4), which

is likely a result of the small 2 x 2 x 1 supercell. While the highest coupling was

found for the next largest distance (e.g (0,2)-(1,6) as described in Chapter 4), this

would require delocalisation of the electron polaron across the entire Fe-bilayer

and therefore subject to strong finite size effects. As larger supercells would be

prohibitively expensive, and the primary use of hematite is as a photoanode, I do not

consider the electron polaron further in this work.
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Figure 6.6: Electron polaron spin moment at the hematite/water interface. Spin moments of
all iron atoms where the hole polaron may localise, shown for 10 statistically
independent DFT-MD trajectories starting from completely different nuclear
configurations. Red line refers to the ‘B’ Fe-bilayer, green line to the ‘D’ Fe-
bilayer, light blue to the ‘Fb’ row of the F-bilayer and dark blue to the ‘Fi’ row of
the F-bilayer. Dashed line shows the spin moment of the hole polaron from DFT
geometry optimisation of bulk hematite. Refer to Figure 6.1 for layer labelling.
I note that due to the significant computational cost, DFT-MD for trajectory 5
was stopped before the 2ps MD was complete.
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Figure 6.7: Electron polaron excess spin density at the hematite/liquid water interface. All
plots correspond to the final geometry of trajectory 4, with an average Fe-O bond
length of 2.12 Å for the ‘Fi’ row and 2.13 Å for the ‘Fb’ row. For comparison,
the average Fe-O bond lengths for iron atoms where the electron polaron does
not localise are 2.08 Å for both the ‘Fb’ and ‘Fi’ row. The electron polaron has
been localised on these two iron atoms for the 2 ps of DFT-MD, and therefore
should be close to equilibrium. Bond lengths between one of the iron atoms and
bonded oxygen atoms are shown in Angstrom. Arrows show contraction and
elongation of the Fe-O bonds with respect to their neutral bond lengths.
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Figure 6.8: Trivial crossing during DFT-MD of bulk hematite. (A) spin moment of all iron
atoms where the hole polaron may localise during DFT-MD, (B) a schematic
of the the energy levels where the line color represents the diabatic identity of
each energy surface (inspired by Ref [183]), (C) spin moment of all iron atoms
where the hole polaron may localise during CDFT-MD using a spin constraint
for the total spin moment of iron atoms on the ‘B’ and ‘D’ Fe-bilayers and (D)
the value of the Lagrange multiplier during CDFT-MD.

6.3 Trivial crossings
In Figures 6.2-6.3 there are 5 total successful hole polaron hops in 20 ps of DFT-

MD, with an equal number of trivial crossings. Trivial crossings refer to crossings

of the potential energy surfaces where there is no interaction, but as a result of

not propagating continuously the electronic state the system moves into the wrong

potential energy surface [182, 183]. For example at around 1450 fs in trajectory 6 a

polaron localised on the ‘B’ layer moves to the interfacial ‘F’ layer, which would

correspond to transport through 3 Fe-bilayers and a distance greater than 10 Å. This

clearly does not correspond to a genuine hopping or tunnelling event of the hole

polaron, but instead a trivial crossing.

One possible method for preventing these trivial crossings, with minimal com-
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putational cost, is CDFT as explored in Chapter 5. By constraining the total spin

moment of the ‘B’ and ‘D’ Fe-bilayers, erroneous localisation of the hole polaron on

these layers can be prevented. Figure 6.8 shows an example of this, for DFT-MD

of bulk hematite chosen as a simpler test of this methodology. When the total spin

spin moment of iron atoms on the ‘B’ and ‘D’ Fe-bilayer increases above their

mean value of -63±0.2, the CDFT SCF loop activates and the Lagrange multiplier

(Eq. 2.18) becomes finite. For around 30 fs the system is propagated using CDFT-

MD, preventing the increase in spin density over the ‘B’ and ‘D’ Fe-bilayers. As

CDFT only activates in response to an increase in spin density over the incorrect

Fe-bilayers, this is effectively a post-hoc correction and not a replacement for non-

adiabatic molecular dynamics. Furthermore, because the system is not propagated

with self-consistent CDFT there is no conservation of total energy. Refer to Chapter

5.2.2.1 for a discussion of CDFT-MD energy conservation. While further work is

ongoing to examine this methodology further, CDFT-MD is currently too expensive

and problematic for studying the dynamics at the hematite/liquid water interface.

An alternative to hybrid DFT-MD or CDFT-MD would be to use a machine

learning model, which has been shown to perform well for the neutral interface [179].

The training data could combine DFT-MD with single point CDFT calculations

where the hole polaron localises on an incorrect Fe-bilayer, which would provide

a high energy penalty for these structures such that the machine learning model

propagates the hole polaron continuously within the correct bilayer. Work towards

this is currently in progress.

6.4 Charge delocalisation

In unpublished work in his thesis [184], Dr Guido Falk von Rudorff briefly examined

the charged hematite/liquid water interface and identified charge delocalisation across

the solvent as a concern. This is very similar to the previously studied Ru2+-Ru3+

in aqueous solution (Chapter 5.2.2.3), where the calculated Hirshfeld charges were

Ru0.5+-Ru1.5+ with the remaining charge delocalised across the solvent. It is likely

that this charge delocalisation is a result of an incomplete electronic description of
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Figure 6.9: Charge delocalisation over the solvent at the hematite/liquid water interface. Av-
erage charge (top row) and spin (bottom row) difference from neutral calculated
for: DFT on the neutral equilibrated geometry (left column), after 400 steps of
excess hole DFT-MD (middle column) and a CDFT calculation constraining
the total charge difference to the hematite slab. The neutral charge and spin
are averaged over 500 structures from neutral DFT-MD calculated by Dr Guido
Falk von Rudorff. Inspired by Ref [184]

liquid water, for example Sprik and co-workers [185] showed that the experimental

water band gap of 8.7 eV [186] is underestimated with HSE06(25%) as 6.6 eV. This

suggests that reproducing both the experimental band gap of bulk hematite and water

with the same functional would be very challenging, as lowering the amount of

HFX to 12% to reproduce the experimental band gap of bulk hematite will have the

effect of further underestimating the water band gap. Sprik and co-workers [185]

further found that the narrowing of the gap between the HOMO of water and the

HOMO of the electrode places the valence band of water almost in coincidence

with the electroactive levels of the electrode, which is likely the cause of the charge

delocalisation found in this work. I do note however that for structural properties and

dynamics, such as the radial distribution function and the self-diffusion coefficient,

HSE06(12%) has been shown to provide good agreement with experiment [97, 179].

As such, it would be prudent to investigate this charge delocalisation problem further,

and to examine the effect of using CDFT to constrain the total charge to the hematite

slab.

Figure 6.9 shows a reproduction of Figure 3.41 from the thesis of Dr Guido Falk

von Rudorff [184], but where the calculations are performed with the more strongly
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Figure 6.10: Charge delocalisation over the solvent at the hematite/liquid water interface.
(A) spin moments of all iron atoms where the hole polaron may localise for tra-
jectory 8 (see Fig 6.2), (B) difference in charge (red) and spin (green) between
hematite slab and water. As the hole polaron localises onto a single iron atom
the spin difference becomes 1.0, while the charge remains delocalised over
both the hematite slab and water with an average value of 0.2 corresponding to
(1-0.20)/2=40% of the charge delocalised across the solvent.

converged DFT parameters as discussed in Section 6.1. This is important because

with the under-converged DFT criteria, Dr Guido Falk von Rudorff found that there

was no hole polaron at the hematite/liquid water interface. Despite this, there is

qualitative agreement between Figure 6.9 and Figure 3.41 from the thesis of Guido

Falk von Rudorff [184], as in both sets of calculations ∼40% of the excess charge

is delocalised over the solvent. Notably, there is no significant difference in charge

delocalisation for the delocalised hole polaron or the localised hole polaron. This is

in agreement with bulk DFT calculations in Chapter 3, where it was found that the

hole polaron localises without any significant change in charge. The formation of a

hole polaron is indicated only by a change in spin moment, consistent with Figure

6.9 where the spin moment over the iron atoms labelled ‘Fe2’ (layers B, D and F in

Figure 6.1) increases and the spin moment over the solvent decreases to zero.

While useful for reference, Figure 6.9 is problematic as this requires comparison

to neutral DFT-MD which may not be statistically converged and makes analysis

more challenging. As an alternative, Figure 6.10 shows a plot of the difference in

charge and spin between the hematite slab and solvent as a function of time for 2 ps

of DFT-MD. Table 6.1 summarises this information, showing the average charge and

spin for each trajectory. In agreement with Figure 6.9, at time 0 fs before nuclear
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Table 6.1: Charge delocalisation over the solvent at the hematite/liquid water interface.
For each trajectory, the total charge difference (‘∆Total charge’) and total spin
difference (‘∆Total spin’) between the hematite slab and water is shown. The
spin moment for the iron atom where the electron or hole polaron is localised is
shown for both DFT (‘DFT polaron’) and CDFT (‘CDFT polaron’), as well as
the difference (‘∆Polaron’). The average charge difference for the hole polaron
is 0.24, corresponding to (1-0.24)/2=38% of the charge delocalised across the
solvent, and for the electron polaron is 0.12, corresponding to (-1-0.12)/2=56%
of the charge delocalised across the solvent. These values correspond to the final
structures of 2 ps DFT-MD, shown in Figures 6.2-6.3 and 6.6.

Hole polaron
Trajectory ∆Total charge ∆Total spin DFT polaron CDFT polaron ∆Polaron
1 0.16 1.01 -3.249 -3.249 0.000
2 0.19 0.99 -3.322 -3.326 -0.004
3 (0.33)a (1.55)a -3.266 -3.266 0.000
4 0.20 1.00 -3.304 -3.271 0.033b

5 0.20 1.02 -3.304 -3.312 -0.008
6 0.39 1.01 -3.315 -3.318 -0.003
7 0.25 0.98 -3.332 -3.335 -0.003
8 0.32 1.00 -3.349 -3.351 -0.002
9 0.19 1.01 -3.313 -3.318 -0.005
10 0.25 0.98 -3.300 -3.301 -0.001
Average 0.24 1.00 -0.003

Electron polaron
1 0.07 1.00 -3.870, -3.837 -3.863, -3.837 -0.007, 0.000
2 0.16 0.99 -3.822, -3.661 -3.821, -3.661 0.001, 0.000
3 0.23 0.98 -3.821, -3.762 -3.821, -3.761 0.000, 0.001
4 0.10 1.01 -3.871, -3.861 -3.865, -3.861 0.006, 0.000
5 0.15 1.00 -3.847, -3.840 -3.845, -3.834 0.002, 0.006
6 0.08 1.00 -3.953, -3.741 -3.946, -3.744 0.007, -0.003
7 -0.06 0.99 -3.969. -3.865 -3.959, -3.874 0.010, -0.009
8 0.11 1.02 -3.953, -3.845 -3.945, -3.845 0.008, 0.000
9 0.15 0.99 -3.960, -3.820 -3.959, -3.810 0.001, 0.010
10 0.19 1.00 -3.856, -3.809 -3.850, -3.812 0.006, -0.003
Average 0.12 1.00 0.002

a Trajectory 3 hole polaron has a highly unusual starting geometry, where one interfacial iron atom
has left the Fe-bilayer and moved closer to the water. This is a very rare event observed during neutral
DFT-MD with the ML model, and work is ongoing to determine the validity of this structure. As
such, the Hirshfeld charge and spin moment do not count towards the average values shown.

b Trajectory 4 hole polaron undergoes an trivial crossing around 1850 fs, and therefore the differ-
ence in CDFT and DFT spin moment is caused by the resulting non-equilibrium state. See Section 6.3.
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relaxation when the hole polaron is delocalised, a small amount of spin is delocalised

over the water. Following nuclear relaxation, the spin difference becomes 1.0 while

the charge persists with around 38% delocalised across the solvent even after 2 ps of

DFT-MD.

These results show that while ∼40% of the excess charge is delocalised across

the solvent, the excess spin is 100% over the hematite slab. As the polaron in

hematite localises with a change in spin, this suggests that the hole polaron may not

be significantly affected by this spurious charge delocalisation.

Table 6.1 also shows the change in spin moment for the hole and electron

polaron upon constraining 100% of the excess charge to the hematite slab using

CDFT. It is found that the change in spin moment is 0.00 for both the electron and

hole polaron, such that the excess charge is fully delocalised over the hematite slab

and does not affect the structure of the polaron. Unfortunately running CDFT-MD

under this constraint breaks energy conservation, which is very similar to Chapter

5.2.4 where fully constraining the excess charge to a single unit in an organic

semiconductor does not lead to successful geometry optimisation. It would appear

that HSE06(12%) is not able to describe the state where 100% of the excess charge

is localised on the hematite slab, and that a more sophisticated functional capable

of reproducing the electronic structure of both bulk hematite and water would be

required. However, despite these caveats it is reassuring that there is no immediate

change in polaron structure upon constraining 100% of the excess charge to the

hematite slab.
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Figure 6.11: Comparison of polaron structure for bulk hematite and at the hematite/liquid
water interface. Excess spin density for an excess electron (top row) and
an electron hole (bottom row) for bulk hematite (left column) and at the
hematite/liquid water interface (right column). The polaron structures are
qualitatively the same, and the visible differences in excess spin density are
largely caused by the different methodologies used: geometry optimisation for
bulk hematite, and 400 K DFT-MD for the hematite/liquid water interface.

6.5 Conclusion

In this Chapter electron and hole polaron structures and charge transport have been

investigated at the hematite/liquid water interface. A total of 20 ps DFT-MD has

been performed for the excess electron and electron hole, demonstrating that both

polarons relax from a delocalised band state to polarons localised at the interfacial

Fe-bilayer. The structures of the electron and hole polaron at the hematite/liquid

water interface are qualitatively the same as those found from calculations of bulk

hematite, with a final comparison of the excess spin density show in Figure 6.11.

The presence of the interface breaks the symmetry of the Fe-bilayer present in

bulk hematite, such that hole polarons localised on the row of the Fe-bilayer closest

to the interface (referred to as the ‘Fi’ row) have a larger reorganisation energy

than hole polarons localised on the row of the bilayer further from the interface

(referred to as the ‘Fb’ row). Furthermore no ‘Fi’ to ‘Fb’ hole polaron hopping events
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were observed during the 20 ps dynamics, which suggests that that hole polarons

may become trapped on iron atoms closest to the interface for long periods of time.

As such, in comparison to bulk hematite the hole mobility at the hematite/liquid

water interface is expected to be greatly reduced. This preferential trapping at the

interface may be beneficial in the context of water splitting, allowing sufficient time

for chemical reactions to take place.

The electron polaron delocalises across two Fe atoms, which are on different

rows of the Fe-bilayer, and therefore there is not expected to be any anisotropy of

the mobility as for the hole polaron. The 2 x 2 x 1 hematite slab used in this work is

not sufficiently large to describe the dynamics of the electron polaron, as the transfer

shown to have the largest effect on the mobility in bulk hematite (Chapter 4.2.3)

would require delocalisation of the electron polaron across the entire Fe-bilayer.

To fully describe the dynamics of the electron polaron larger system sizes would

be required, which would be prohibitively expensive with hybrid DFT-MD. As the

primary application of hematite is as a photoanode material, the hole polaron is of

greater interest and therefore I expect that future work will focus on the hole polaron

at the hematite/liquid water interface.

The DFT-MD performed in this Chapter is very expensive, and so for future

work it is hoped that a machine learning model may be used to accelerate these calcu-

lations. This would allow for calculation of the hole mobility at the hematite/liquid

water interface, which can be compared to the bulk mobilities calculated in Chapter

4.



Chapter 7

Conclusions and outlook

Charge transport has been identified as a key issue for the use of hematite in a number

of technological applications, especially in photocatalysis and photoelectrochemistry

[6, 9, 11, 146]. This thesis has provided a comprehensive and detailed understanding

of the physical mechanisms that lead to the sluggish transport of charge carriers in

bulk hematite, and has further extended this analysis to the hematite/liquid water

interface. To the best of my knowledge these are the most sophisticated calculations

performed to date of hematite, using spin-constrained gap-optimised hybrid density

functional theory in combination with large supercells.

In Chapter 3 I presented the structure of the excess electron and electron hole

polarons and associated reorganisation energies for a series of bulk iron oxides:

hematite (α−Fe2O3), lepidocrocite (γ−FeOOH), goethite (α−FeOOH) and white

rust (Fe(OH)2). The polaron structures and extent of charge localisation remains

largely consistent across the studied iron oxides, except for the hole in goethite

which according to my calculations is delocalised as a result of the energy penalty for

disrupting the extended hydrogen bonding framework. This may make this material

a promising candidate as a hole conducting material.

Chapter 4 extended the work performed in Chapter 3, with calculation of both

the electron and hole mobility for bulk hematite using CDFT. I was also to provide

further insight into the 2-site delocalisation of the electron polaron identified for

all iron oxides in Chapter 3, showing that Hab >
λ

2 such that the transition state of

electron transfer theory becomes the minimum. I also discussed how the three-fold
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degenerate tetragonal distortion of the Fe octahedron is responsible for the low hole

mobility in hematite, calculated as 0.031 cm2/Vs, a property well recognised to bear

directly upon the photocatalytic behaviour of hematite [6, 9]. The higher mobility

of the electron polaron, 0.098 cm2/Vs, was attributed to a delocalisation over two

neighbouring iron atoms, advantageous for charge transport due to the larger spatial

displacements per transfer step.

In Chapter 5 I provided an extension to CDFT in the popular DFT package

CP2K, implementing the necessary force terms which arise from a constraint based

on Hirshfeld partitioning of the electron density. The previously used Becke par-

titioning was shown to predict qualitatively incorrect atomic charges, as a result

of dividing space equally among all atoms. I verified and benchmarked this new

implementation against systems previously studied in a plane-wave implementation

of CDFT, showing good agreement for both geometry optimisation and molecular

dynamics. Consistent with previous work [175], I found that an IASD markedly

larger than 1 is an indicator of systems for which CDFT calculations can be unreli-

able. With the exception of these pathological cases, I found that CDFT is a powerful

tool for the calculation of electron transfer parameters at a reasonable computational

cost.

In Chapter 6 electron and hole polaron structures and charge transport was

investigated at the hematite/liquid water interface. A total of 20 ps DFT-MD was

been performed for both the excess electron and electron hole, demonstrating that

both charges relax from a delocalised band state to polarons localised at the interfacial

Fe-bilayer. The structures of the electron and hole polaron at the hematite/liquid

water interface are qualitatively the same as those found from calculations of bulk

hematite, however the presence of the interface breaks the symmetry of the Fe-bilayer

and as a result the hole mobility is expected to be greatly reduced.

Outlook

While this thesis has presented new insight into the structure and dynamics of charge

carriers in bulk hematite and other materials, there is still much to understand about
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these differ for natural systems and in device applications. Chapter 6 provides a

glimpse of future research that is made possible through the contributions of my work,

extending the calculations of bulk hematite to the hematite/liquid water interface.

Calculation of charge mobility at the interface would allow a better understanding

of the rate-limiting transport processes governing photocatalytic water splitting

efficiency [11, 146]. With a machine learning model it would also be possible to

calculate other properties not accessible with standard DFT-MD, such as diffusion

coefficients and thermodynamic integration to calculate free energy differences.

I have presented an implementation of the necessary force terms which arise

from a constraint based on Hirshfeld partitioning of the electron density, which

will allow for Hirshfeld based CDFT geometry optimisation and CDFT-MD in

the popular DFT package CP2K. I expect this method to become valuable for the

simulation of condensed phase electron transfer reactions, such across interfaces

between different semiconductors or between semiconductors and liquid solutions,

thus becoming part of the toolbox for first principles electrochemistry [147].

Alongside future computational work that this thesis has made possible, experi-

mental studies may be motivated from my results. I predicted that the electron hole

in goethite is fully delocalised, which makes this material a promising candidate

as a hole conducting material. I would recommend that temperature dependent

conductivity measurements be performed to verify if the temperature dependence is

band-like.

A significant challenge for this work is that the charge mobility for undoped

hematite is not known experimentally. I hope that motivated from this work, time of

flight experiments [187] could be performed from which the mobility of undoped

hematite can be calculated. It would also be valuable to see whether the electron and

electron hole polaron structures predicted in this work are experimentally verifiable,

such as with IR spectroscopy performed on thin hematite films.
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